SVOM

LOW-LATENCY ALERTS & DATA ANALYSIS FOR MULTI-MESSENGER ASTROPHYSICS

> Cyril Lachaud (APC, Univ. Of Paris) on behalf of the SVOM collaboration

The SVOM mission

« Space-based multi-band astronomical Variable Objects Monitor » Launch mid-2023, for 3+2 years

SVOM OBSERVATION PROGRAMS

The Core Program (GRB). The first objective of the SVOM mission. ~50-60 ECLAIRs alerts/yr (loc. < 13 arcmin). ~90 GRM only alerts (loc. < 5-10 deg). ~30-40 GRBs/yr with prompt emission over 3 decades + X-ray and V/NIR afterglow + redshift.

General Program (GP). SVOM will be an open observatory : observations will be awarded by a TAC (**a SVOM co-I needs to be part of your proposal**). 10% of the time can be spent on low Galactic latitude sources during the nominal mission (up to 50% during the extended mission).

Target of Opportunity (ToO) program : **alerts sent from the ground to the satellite**. Initially 1 ToO per day focussed on time domain astrophysics including multi-messengers. ToO program devoted time increases during extended mission.

CORE PROGRAM (GRB) DOWNGOING TELEMETRY LINKS

VHF	Alert products (ECLAIRs, GRM then MXT, VT). 65% of the alerts received within 30s at the French Science Center.	
Beidou	Beidou Navigation Satellite System (BDS). For VHF redundancy and only for high priority alert products . Fast but still under review (recent addition to the SVOM satellite).	
First aler	t notices will be sent automatically within minutes after on-board GRB detection	
X-band	All data are downloaded thanks to X-band stations located in Sanya (Hainan - China).	
stations	Time between 2 passages strongly depends on the orbit (max=12h).	
Circulars with updated analysis will follow the data reception		

UP-GOING TELECOMMANDS LINKS (GP & ToO)

	GP & ToO-NOM
S-band stations	Standard S-band stations are located in Sanya, Kashi, Qingdao (China).
	GP Work Plan is uploaded one week in advance .
	ToO-NOM are uploaded with a typical 48h delay after decision.

ToO-EX & ToO-MM		
S-band stations	To reduce the latency for fast ToO (ToO-EX and ToO-MM for exceptional and multi-messenger alerts), Kourou (French Guyana) and Hartebeeshoek (South Africa) can be used as well. We have a delay < 12h between alert and start of observations.	
Beidou	Beidou system will be used to reduce the latency with respect to S-band stations for ToO-EX and ToO-MM . Delays still under review. The typical delay between alerts and observations will be ~5 hours at start but will be drastically reduced later.	d 5

GP & ToO DOWNGOING LINKS

GP &ToO-NOMX-band
stationsData downloaded through standard X-band stations in China.

ToO-EX		
X-band stations	ToO-EX will use KUX and HBX in addition to the Chinese X-band stations.	

ToO-MM		
VHF	MXT Position packet and photon packets will be sent to the ground through VHF for immediate analysis.	
(Beidou)	Beidou could be used for MXT position packet but it is not confirmed yet	

LATENCY SUMMARY

SVOM DATA POLICY

Core Program (GRB)

Real-time VHF scientific products (under the supervision of the Burst Advocates) will be **public as soon as they are available** => similar to Swift or Fermi-GBM.

All the scientific products are public six months after the data production.

General Program (GP)

Semester Call for proposal (in association with a SVOM Co-I), it can include ToO.

All the SVOM data will be distributed to the Responsible Co-I.

One year of proprietary period before all the scientific products become public.

ToO Program (still under discussion)

ToOs triggered by the SVOM CO-Is => we will make **publicly available as soon as possible** any scientific product that is relevant to perform follow-up observations. The number of products to be publicly released will be addressed case by case.

ToOs triggered by non SVOM CO-Is => all the scientific products will be public as soon as they are available.

The future = a large increase of the alert flow asking for transient candidate follow-up observations

Our first thought was to deal with the alert flow this way :

optical/IR alerts: > 10^6 alert/day

radio alerts: several alert/day

SVOM ToO INFRASTRUCTURE AND FINK

We plan to use the FINK broker developed for the Vera Rubin Observatory / LSST which has the capacity to deal with a large volume of alerts to perform the filtering.

Thanks to FINK we will trigger our own ground telescopes to enrich promising candidates with data and decide to eventually trigger a ToO for the satellite.

SVOM will have also its own channel in FINK so that subscribers can receive our alerts this way (allowing the usage of the FINK filtering mechanisms).

CONCLUSION

SVOM will be launched mid-2023 and will be an important actor both for alerts and follow-up in space and ground.

The recent addition of the Beidou System to the satellite will shorten delays up and down. Still under evaluation by the System team.

