Monte Carlo track structure simulations and the biophysical model NanOx in targeted radionuclide therapy

CELLDOSE collaboration: M E Alcocer-Ávila¹, A Larouze¹, E Hindié^{2,3} and C Champion¹ PICTURE collaboration: M E Alcocer-Ávila⁴, V Levrague⁵, R Delorme⁵, E Testa⁴ and M Beuve⁴

¹CELIA. Université de Bordeaux. 33405 Talence. France ²INCIA, Université de Bordeaux, CHU de Bordeaux - Service de Médecine Nucléaire, 33604 Pessac, France ³Institut Universitaire de France, 75231 Paris Cedex 05, France ⁴IP2I, Université Claude Bernard Lvon 1, 69622 Villeurbanne Cedex, France ⁵LPSC, Université Grenoble Alpes, 38026 Grenoble Cedex, France

March 15. 2022

TRT with Auger electron and α -particle emitters

- TRT using Auger electrons (AEs) and α -particles has generated much interest in the last decades
- AEs and α -particles are high linear energy transfer (LET) radiations able to deliver cytotoxic radiation doses to tumors while sparing the healthy tissue, in contrast to β^{-} particles and X-rays
- Computer simulations may be used for preclinical dosimetry of promising AE and α particle emitters

Figure 1: Comparison of radioactive particles for TRT [1]

The role of Monte Carlo track structure (MCTS) simulations in TRT

- MC codes have a long history in radiation physics and radiation biology ("gold standard")
- Track structure simulations follow radiations on an event-by-event basis
- Very time-consuming, but ideal for subcellular volumes, low-energy radiations and DNA damage studies
- Features make MCTS simulations interesting for accurate radiation dosimetry in TRT

Figure 3: Illustration of the track structure of a 10 MeV proton and 200 MeV carbon ions $\cite{2}\cite{2}$

Figure 2: Illustration of the event-by-event approach for protons in water

Cellular dosimetry with CELLDOSE

CELLDOSE [3] simulations for evaluating radionuclides for TRT:

- β^- -emitters: ⁹⁰Y, ¹³¹I, ¹⁷⁷Lu, ¹⁶¹Tb
- AE-emitters: ⁷¹Ge, ^{103m}Rh, ¹¹⁹Sb, ¹²⁵I, ¹⁶¹Ho, ^{189m}Os, ^{193m}Pt, ^{195m}Pt
- α -emitters: ²¹¹At, ²¹²Pb/²¹²Bi, ²¹³Bi, ²²³Ra, ²²⁵Ac and ²²⁷Th
- Calculation of S-values (Gy·Bq⁻¹·s⁻¹) and normalized absorbed doses assuming cell nucleus as critical target

• Case of a single cell and a small cell cluster

Figure 4: Left: single cell with spherical geometry ($R_C = 7 \ \mu$ m, $R_N = 5 \ \mu$ m); right: cell cluster (19 cells)

• Different radionuclide distributions: cell surface, intracytoplasmic, intranuclear and whole cell

Cellular dosimetry with CELLDOSE

Single cell

Cell cluster

Figure 5: Normalized absorbed doses to the **nucleus of a single cell** for different distributions of selected β^- -particle and AE emitters

Figure 6: Normalized absorbed doses to the nucleus of the central cell in a cluster for different distributions of selected β^- -particle and AE emitters

Mario ALCOCER

MCTS simulations and the biophysical model NanOx in TRT

Towards more comprehensive approaches

Some limitations in the previous studies include:

• Energy deposition events described exclusively during the physical stage.

 \rightarrow Need of accounting for processes occuring in later stages of radiation action (Fig. 7)

• Need of modeling realistic cell geometries and complex multicellular systems

Other simulation tools and biophysical models may be applied for reaching more clinically relevant endpoints, e.g. the **biological dose** for ion irradiations

Figure 7: Stages of radiation action [2]

Planning Innovative Cancer Therapies Using RadioElements

The **PICTURE project** focus on the optimization of dosimetry calculations for targeted alpha therapy (TAT) and boron neutron capture therapy (BNCT), considering:

- Biological dose modeling: NanOx + Geant4-DNA
- The impact of different **radionuclide distributions** in cells, including heterogeneities
- The role of **nuclear** and **extra-nuclear** sensitive sites in radiation-induced cell death

Figure 9: Principle of boron neutron capture therapy (BNCT) [7]

Figure 8: Potentially important extra-nuclear sites in a cell [6]

The PICTURE project

- Creation of a database of realistic 3D cell geometries based on confocal microscopy
- Experimental studies with different cell lines (CHO-K1, SQ20B and U87) irradiated in conditions of full (FCT) and partial cell transversal (PCT)

Figure 10: Micrograph of SQ20B cells [8]

Figure 11: Cell irradiation conditions with broad ion beams

Mario ALCOCER

MCTS simulations and the biophysical model NanOx in TRT

The NanOx biophysical model

- Prediction of cell survival for ion irradiations
- Considers stochastic nature of radiation at different scales. Two types of biological events: local lethal events (LLE) and global events (GE):

 $\label{eq:LLE} \begin{array}{l} \text{LLE} \rightarrow \text{inactivation of } \textbf{nanometric targets} \\ \text{GE} \rightarrow \text{accumulation of sublethal lesions including} \\ \text{physico-chemical processes (micrometric scale)} \end{array}$

Figure 13: Irradiation of cells by a given radiation impact [9]

$$S = S_{LLE} \times S_{GE} \tag{1}$$

The NanOx biophysical model

- 5 parameters derived from experimental data:
 - \rightarrow Sensitive volume radius \rightarrow 3 parameters characterizing the effective local lethal function, used for calculating the survival to LLE (Fig. 14)

$$F(z) = \frac{h}{2} \left[1 + \operatorname{erf}\left(\frac{z - z_0}{\sigma}\right) \right]$$
(2)

 \rightarrow **Quadratic coefficient** β_r for reference (photon) irradiation

Figure 14: Effective local lethal function for the V79 cell line

The NanOx biophysical model

- NanOx has been applied to study the radiation response of several cell lines in the context of hadrontherapy [10]
- α and β coefficients can be obtained from a LQ fit to NanOx results (Fig. 16)

Figure 15: Image of HSG cells [11]

• NanOx predictions are more accurate than the ones of other biophysical models

Figure 16: α values of HSG cells for carbon ions. The graph shows experimental data as well as the predictions of several biophysical models, including NanOx [12]

Conclusions

- MCTS codes remain the best computational tools for investigating ionizing radiation interactions at the subcellular level, including preclinical studies for TRT
- Current challenges for realistic simulations of TRT treatments include the consideration of complex cell geometries, heterogeneous distributions of radiation sources in the cells and extra-nuclear sensitive sites
- The ongoing PICTURE project is expected to improve the biological dose estimation for innovative radiation therapies, especially TAT and BNCT
- Need of experimental data regarding the 4D biodistribution of radionuclides with subcellular resolution

Thank you for your attention

Merci pour votre attention

Mario ALCOCER MCTS simulations and the biophysical model NanOx in TRT

References

- [1] S. Poty, L. C. Francesconi, M. R. McDevitt, et al., J. Nucl. Med. 2018, 59, 878-884.
- [2] S. J. McMahon, K. M. Prise, Cancers 2019, 11, 205.
- [3] C. Champion, P. Zanotti-Fregonara, E. Hindié, J. Nucl. Med. 2008, 49, 151–157.
- [4] B. Vaziri, H. Wu, A. P. Dhawan, et al., J. Nucl. Med. 2014, 55, 1557-1564.
- [5] T. Sato, Y. Iwamoto, S. Hashimoto, et al., J. Nucl. Sci. Technol. 2018, 55, 684-690.
- [6] Z. Kuncic, H. L. Byrne, A. L. McNamara, et al., Comput. Math. Method. M. 2012, 2012, 1-9.
- [7] M. Suzuki, Int. J. Clin. Oncol. 2020, 25, 43–50.
- [8] J.-B. Guy, B. Méry, E. Ollier, et al., Sci. Rep. 2017, 7, 12207.
- [9] M. Cunha, C. Monini, E. Testa, et al., Phys. Med. Biol. 2017, 62, 1248-1268.
- [10] C. Monini, É. Testa, M. Beuve, Acta Phys. Pol. B 2017, 48, 1653.
- [11] Y.-J. Kim, Y. Jo, Y.-H. Lee, et al., Sci. Rep. 2019, 9, 17648.
- [12] C. Monini, G. Alphonse, C. Rodriguez-Lafrasse, et al., Phys. Imaging. Radiat. Oncol. 2019, 12, 17-21.

MCTS simulations and the biophysical model NanOx in TRT

Appendix: Physical properties of some β^- -emitters

Radionuclide	^{131}I	⁹⁰ Y	¹⁷⁷ Lu	¹⁶¹ Tb
Half-life (day)	8.02	2.67	6.647	6.906
β^- -particles mean energy (keV)	182	932.9	133.3	154.3
Daughter nucleus	¹³¹ Xe (stable)	⁹⁰ Zr (stable)	¹⁷⁷ Hf (stable)	¹⁶¹ Dy (stable
CE (intensity per decay)	6.46%	0.01%	15.47%	142%
CE (energy per decay in keV)	9.57	0.2	13.52	39.28
CE energy range in keV [†]	45.6 - 602.4	1742.7	6.2 - 206.3	3.3 – 98.3
AE (intensity per decay)	69.75%	0.13%	111.65%	1096.4%
AE (energy per decay in keV)	0.41	0.0007	1.13	8.94
AE energy range in keV	0.026 - 32.9	0.022 - 1.8	0.01 - 61.7	0.018 – 50.9
Total electron energy per decay (keV)	191.8	933.1	147.9	202.5
γ or X-ray radiation useful for imaging (energy in keV and % abundance)*	364.5 (81.7%) 330 (1.6%) 284.3 (6.1%) 80.2 (2.6%)	-	208 (11%) 113 (6.4%)	75 (10.2%)
Photons (energy per decay in keV)	382.7	-	35.1	36.35
Total energy per decay in keV (photons + electrons)	574.5	933.1	183	238.9
% of energy emitted as electrons	33.4%	${\sim}100\%$	80.8%	84.8%
% of energy emitted as photons	66.6%	${\sim}0\%$	19.2%	15.2%

Appendix: Physical properties of some AE-emitters

Radionuclide	⁷¹ Ge	^{103m} Rh	¹¹⁹ Sb	^{125}I
Half-life (day)	11.43	0.039	1.591	59.4
Type of decay (%)	EC (100%)	IT (100%)	EC (100%)	EC (100%)
Daughter nucleus	⁷¹ Ga (stable)	¹⁰³ Rh (stable)	¹¹⁹ Sn (stable)	¹²⁵ Te (stable)
CE (intensity per decay)	-	99.06%	83.97%	94.47%
CE (energy per decay in keV)	-	34.97	16.97	7.28
CE energy range in keV [†]	-	16.56 – 39.76	19.4 - 23.9	3.7 – 35.5
AE (intensity per decay)	520.5%	587.94%	2368%	2300%
AE (energy per decay in keV)	5.01	2.72	8.86	11.96
AE energy range in keV	0.012 - 10.1	0.034 - 22.28	0.011 - 27.9	0.023 - 30.3
Total electron energy per decay (keV)	5.01	37.69	25.83	19.24
γ or X-ray radiation useful for imaging (energy in keV and % abundance)*	-	-	-	-
Photons (energy per decay in keV)	4.07	1.65	23.14	42.5
Total energy per decay in keV (photons + electrons)	9.08	39.34	48.97	61.74
% of energy emitted as electrons	55.2%	95.8%	52.8%	31.2%
% of energy emitted as photons	44.8%	4.2%	47.2%	68.8%
photon-to-electron energy ratio (p/e)	0.81	0.04	0.90	2.21