Impact of intracellular radionuclide distribution in Targeted Alpha Therapy: a Monte Carlo biophysical study in 3D multicellular model

Victor Levrague¹, Mario Alcoler-Avila², Lydia Maigne³, Michaël Beuve², Etienne Testa² and Rachel Delorme¹

1: LPSC, Grenoble 2: IP2I, Lyon 3: LPC, Clermont-Ferrand

Impact of intracellular radionuclide distribution in Targeted Alpha Therapy: a Monte Carlo biophysical study in 3D multicellular model

Summary :

- **Problematics**
- Methods
- Mono-cellular
- Multi-cellular

Targeted alpha therapy

Targeted alpha therapy (TAT) :

- Mean energies : 5-10 MeV
- Mean range : 40-100 μm

How to predict doses and biological effects?

 \rightarrow Problematics in Biophysical modeling :

Antibody + radionuclide

Non-localized cancer sites

- Low ranges \rightarrow Need to take into account : heterogeneity of deposited dose energy lost by ions in nuclei

 - cell and tumor geometry

- Different scales : **nano**metric (DNA) and **micro**metric (cells)

Problematics for realistic treatment simulation

1 : Micro-dosimetric biological data, e.g. number of radionuclides per cell, related to an injected activity \rightarrow rare

- 2: Importance of intra-cellular radionuclide distribution ?
 - Quantified in mono-cellular models (Guerra Liberal et al. 2021)

Objective of this study to quantify it in a **multi-cellular** model

Methods : Simulation and analysis chain

Doses and Cell Survivals calculations

Simulated geometry in Geant4-DNA

- Monte-Carlo code with low energy track of particles
- Electron cut applied
- Cells = concentric spheres
- Output:
 - ° Doses in **nucleus** and cells
 - ° In and out energies of alpha in nuclei

Biophysical model : NanOx (1/2)

- **Biophysical model** \rightarrow calculate DNA damage inflicted by a particle \rightarrow cell survival
- Takes into account oxidative stress, stochastic aspects of irradiation
- Validated for hadrontherapy

Cells irradiated in NanOx, in hadrontherapy Cunha et al. 2017

Cell survival curve for low and high LET ions

Biophysical model : NanOx (2/2)

- PICTURE project \rightarrow objective to adapt NanOx for low energy ions
- We validated hypothesis to use NanOx in our study

Electron tracks are concentrated around the alpha path

Internalization study

1 : Mono-cellular model

2 : Multi-cellular model

Internalization study : mono-cellular model (1/5)

Irradiations conditions :

- At-211 irradiation
- 6 MBq = **1700** alpha particles per cell

Experimental data from Chouin et al. 2013

Nucleus radius = 5 μm Cell radius = 10 μm

Internalization study : mono-cellular model (2/5)

Different distributions studied :

Same number of alpha particles for each distribution

Observables :

Mean cell and nucleus dose, mean energy deposited by a particle, probability to hit the nucleus \rightarrow for all distributions

III - Mono-cellular study

Internalization study : mono-cellular model (3/5)

• Good agreement with other models

Relative deviation with other works			
Emission zone	Guerra et al.	MIRDCELL	Goddu et al.
Membrane	4.7 %	9.4 %	1.8 %
Cytoplasm	9.4 %	5.1 %	2.2 %
Nucleus	3.0 %	12.9 %	0.25 %

12

Internalization study : mono-cellular model (4/5)

When nuclei are hit

- \rightarrow Deposited energy depends on energy of the particle
- \rightarrow Energy $\searrow \sim \Rightarrow$ Linear Energy Transfer \nearrow

Membrane emission

Nucleus emission

Internalization study : mono-cellular model (5/5)

Two main effects :

- **Edep** per particle (\searrow with internalization)
- Probability to hit the nucleus
 (
 with internalization)
- \rightarrow *7 between **membrane** and **nucleus** emission

In this study :

Cell survival always ~ zero →Need a multi-cellular approach

Internalization study

- 1 : Mono-cellular model
- 2 : Multi-cellular model

Spheroid generation tool : CPOP

-

95 μm radius Spheroid generated by CPOP

- Tool to generate multi-cellular geometries
- Realistic cell overlap management

Maigne et al. 2021

Internalization study : multi-cellular model (1/6)

Irradiations conditions :

- Cell line : OVCAR-3
- Cell packing ~ **25 %** (681 cells)
- At-211 irradiation
- 400 kBq = 18 alpha particles per cell in 0-50 μ m depth 9 alpha particles per cell in 50-95 μ m depth
- Particles are all **fixed on all cells**

95 µm radius Spheroid

Cell radius $\approx 6.9 \ \mu m$ Nucleus radius $\approx 5.5 \ \mu m$

Experimental data from Chouin et al. 2012 \rightarrow Murine treatment

17

Internalization study : multi-cellular model (2/6)

Different distributions studied :

Same number of alpha particles for each distribution

Observables :

Mean cell and nucleus dose, mean energy deposited by a particle, cross-fire nucleus irradiation, cell survival

Internalization study : multi-cellular model (3/6)

Similar behavior with our mono-cellular model

IV- Multi-cellular study

Internalization study : multi-cellular model (4/6)

Cross-fire irradiation in nucleus \rightarrow good quantification of intra-cellular effects importance

With our simulation conditions, at least higher than 63%

Internalization study : multi-cellular model (5/6)

Three effects :

- Probability to hit the nucleus
 (with internalization)
- **Edep** per particle (\searrow with internalization)
- **Cross-fire** (> with internalization)
- \rightarrow *1.4 between **membrane** and **nucleus** emission

Internalization study : multi-cellular model (6/6)

- curative activity (for mices) used

Conclusion

Conclusion :

-

- Average nucleus dose, from membrane to nucleus emission :
 - * 7 on *mono-cellular* model
 - * 1.4 on *multi-cellular* model
 - Average **cell survival**, from membrane to nucleus emission : *4000 on *multi-cellular* model
- With all cells labeled, $\mathbf{TCP} \simeq 1$

"Order of magnitude"

To go further

- Consider a model where cells are not all labeled by particles, with fixed injected activity
 - With random labeling in all the spheroid/tumor
 - With small unlabeled zones
- Study **different sizes** of spheroid/tumor
- Kinetic model to predict antibody penetration in a tumor

Thanks for your attention

Bibliography

- 1: Maigne, L., et al. 2021. Physica Medica 89: 41-50.
- 2: Francisco D C Guerra Liberal et al. 2021. Biomed. Phys. Eng. Express 7 035008
- *3*: Chouin N et al. 2013. J Nucl Med. Aug; 54(8): 1347-53
- 4: Chouin, N., et al. 2012. The Quarterly Journal of Nuclear Medicine and Molecular Imaging. 56.6: 487-495.

