Montpelier, 16 març 2022

SEMINAIRE DE RADIOTHERAPIE INTERNE VECTORISEE

Radiobiologie clinique

Marta Cremonesi

marta.cremonesi@ieo.it

Radiation Research Unit, Istituto Europeo di Oncologia, Milano, Italy

Radiothérapie Interne Vectorisée

Beaucoup d'applications

Peu de conaissances sur les effets radiobiologiques

Beaucoup à découvrir...

- ¹³¹I: hyperthitoidism, differentiated thyroid cancer (DTC)
- ⁸9Sr, ¹⁵³Sm-EDTMP, ²²³Ra-chloride: Bone Metastases
- ¹³¹I-mIBG: pheocromocitomas, paragangliomas
- Radioimmunotherapy(RIT) (Zevalin, Bexxar): NHL
- Peptide Réceptor Radionuclide Therapie: Neuroendocrine Tumors
- SIRT/Radioembolization: Primary and Metastatic Liver Tumors ...
- ¹⁷⁷Lu-PSMA

Quand a- t-on commecé à comprendre sérieusement que la dose absorbée ne suffisait pas et qu'il fallait introduire des models radiobiologiques

dans le domaine de la **RIV** ?

460-4480 mCi

17-166 GBq

¹⁶⁶Ho-DOTMP:

Premier cas de toxicité rénale très sérieuse à doses «plutot» faibles

¹⁶⁶Ho-DOTMP utilizé pour l'irradiation de la moelle ossuse (au cible **25 Gy)** avant la transplantation de cellules staminaless en patients avec myeloma.

à la véssie (MIRD 14): aux reins (ICRP 53): 45-155 Gy 0.5-8 Gy

33% G1–G3 toxicité à la véssie 35% G3-G4 toxicité rénale

excretion rénale très rapide:

Durée de transite par les reins : 2.6 min Les images à 3 h ne montrent pas (plus) de captation rénale

" severity was related to radiation dose and probably to dose rate

Breitz H et al. Ca Biother Radiopharm. 2003;18(2):225-30.

Modèle linéaire quadratique LQ

$SF(D_t) = exp(-\alpha D - \beta D^2)$

BED - biological effective dose

 α radiosensitivity

 β sparing capacity

d = dose/fr D = d · n fractions (i.e. total treatment dose)

$$BED = n \cdot d \cdot (1 + d) \frac{1}{\alpha/\beta}$$

Lea-Catcheside factor, inclding μ repair costant of DNA during the prolonged irradiation

 α/β = 7-20 Gy / 0.5-6 Gy acutely / late responding tissues Typically: α/β = 10 Gy tumors; 3 Gy normal organs

 $T_{rep} = 1.5 h / 0.5 h$ repair half-life normal tissues / tumors

Barendsen, 1982; Fowler, 1989; Bodey, 2003

Response to radiation may depend more on dose rate than dose

Kidneys are slowly proliferating cells (\rightarrow late responding). Low $\alpha/\beta \sim 2.4$ Gy. RE is higher at high dose rates for slowly proliferating tissues (kidneys) than for rapidly proliferating tissue (tumor, bone marrow).

Despite low absorbed doses, dose rate effects could have provoked the toxicity

Relative Effectiveness of radiation

$$RE = 1 + \frac{R_0}{(\mu + \lambda e)(\alpha/\beta)}$$

 $\label{eq:R_o:initial} \begin{array}{l} \mathsf{R}_{o} \text{: initial dose rate} \\ \mu \text{: tissue repair, } \lambda_{e} \text{: effective decay} \end{array}$

Dale, PMB 1996

2006

absorbed dose to the kidneys: 2-4 Gy ICRP 53, 8-17 Gy imaging ! BED = 20 - 44 Gy

Initial dose-rate to the kidney: 0.7 Gy/h, with rapid decrease If T_{rep} 1h, α/β = 2.4 Gy RE = 1.3 (BED = 1.3 ·D = 10-22 Gy)

Breitz H et al. J Nucl Med. 2006;47(3):534-42.

éffet du débit dose

Le débit de dose influence beaucoup la réparation du dommage sub-létale

\downarrow dose-rate, $\downarrow \beta$

le debit de dose a peu d'influence sur les tumours (ou les tissus à proliferation rapide)

le debit de dose influence beaucoup les tissus normaux (ou tumeurs à proliferation lente): ↓ d debit de dose, ↓ toxicité

fractionément
dose cumulative possible

effet du fractionnement

RIV = bas débit de dose; plusieurs cicles peuvent réduire la toxicité sans affecter la réponse

Quelques examples de RIV oú des concepts radiobiologiques:

- **ont été evidents** \rightarrow ont stimulé plusieurs études
- ont été considérés pour changer le protocol de la thérapie

en ordre cronologique...

- PRRT avec ⁹⁰Y e ¹⁷⁷Lu pour les NET
 - SIRT / Radioembolisations de lésions épatiques ⁹⁰Y microsfères
 - Traitements successifs ou combinés de EBRT et RIV

PRRT avec ⁹⁰Y et ¹⁷⁷Lu

pour les tumeurs neuroendocrines (NET)

Peptide Receptor Radionuclide Therapy

radiolabelled peptides able to bind to somatostatin receptors, for a selective irradiation of tumour cells

Renal toxicity has been observed in 9°Y-PRRT

in patients with long life expectancy

Impact of number of cycles – ⁹⁰YPRRT

Fig. 4 Creatinine clearance loss as a function of cumulative absorbed dose to the kidneys for 2 to 4 cycles (*diamonds*) and 5 to 11 cycles (*triangles*). Patients receiving therapy in a higher number of cycles experienced creatinine clearance loss at higher absorbed doses. Data derived from the study by Bodei et al. [37]

⁹⁰Y-DOTATOC

Patient-Specific Dosimetry in Predicting Renal Toxicity with ⁹⁰Y-DOTATOC: Relevance of Kidney Volume and Dose Rate in Finding a Dose–Effect Relationship

Raffaella Barone, MD1; Françoise Borson-Chazot, MD, PhD1; Roelf Valkema, MD, PhD2; Stéphan Walrand, PhD1

Barone R, et al. JNM 2005;46 Suppl 1:99S-106S.

LQ model: equations for MN

radiobiological parameters

dose effect correlations for kidneys exist for 9°Y-PRRT

démie vie effective

D₅₀ Lu 3⁶ Gy D₅ Lu 26 Gy

This applies in the hypothesis of dose uniformity, which is it not the case

Severe renal toxicity is not observed in ¹⁷⁷Lu-PRRT

no grade III /IV of nephropathy, only some cases of grade I is reported by some authors

no NTCP correlation curves are derivable

dose uniformity in renal cortex

what do dosimetric models indicate

The higer non-uniformity of ¹⁷⁷Lu should mitigate the renal burden as compared to ⁹⁰Y \rightarrow higher tolerability of ¹⁷⁷Lu as compared to "mean dose" from hp of uniformity matching with what is clinically observed

several dosimetric parameters can be considered

Amato E, et al. Journal of Physics 2020

700

Therapeutic schemes in ¹⁷⁷Lu and ⁹⁰Y-PRRT: radiobiological considerations

Anna SARNELLI¹*, Francesco GUERRIERO², Francesca BOTTA², Mahila FERRARI², Lidia STRIGARI³, Lisa BODEI⁴, Vincenzo D'ERRICO¹, Elisa GRASSI⁵, Federica FIORONI⁵, Giovanni PAGANELLI⁶, Roberto ORECCHIA⁷⁻⁹, Marta CREMONESI²

the impact of cycles in 9°Y and 177Lu

for ¹⁷⁷Lu, and lower absorbed doses, the

Sarnelli A, et al. Q J Nucl Med Mol Imaging. 2017;61(2):216-231.

impact of cycles is negligible 177Lu-PRRT $40 = A \approx I Gy$ 20 = BED0 = Lu-1 = Lu-2

29.6 GBq

29.6 GBq

Modèle extrapolé pour les reins

Wessels B, et al 2008: FSU = Fractional Sub Unit ; SF_{FSU} 25% limite pout l'insuffisance rénale

			SF _{FSU} (kidney) comparison in PRRT by LQ model				
			CORTEX			WHOLE KIDNEY	
À parité de dose moyenne cumulative À parité (presque) de dose moyenne cumulative	PRRT schemes	Activity distribution	EUBED/BED	SF _{FSU} % (D _{mK})	SF _{FSU} % (EUBED)	SF _{FSU} % (D _{mK})	
	Lu-1 30 GBq, 4-8 cy	Unif	0.95	43	34	32	
		Non-unif	0.51		56		
	Y-90 11 GBq, 4 cy	Unif	0.89	23	17	14	
		Non-unif	0.62		29		
	Y-90 11 GBq, 2 cy	Unif	0.86	18	14	10	
		Non-unif	0.59		26		
	Y-90 13 GBq, 2 cy	Unif	0.82	13	11	7	
		Non-unif	0.57		22		

...stimulant la recherche en radiobiologié

' SF_{FSU} ' = 'Fonctionalité' de la FSU *

¹⁷⁷Lu-PRRT basée sur la dosimétrie pour augmenter l'éfficacitée

Individualized Dosimetry of Kidney and Bone Marrow in Patients Undergoing ¹⁷⁷Lu-DOTA-Octreotate Treatment

Sandstrom M et al. J Nucl Med 2013; 54:33–41

200 pts, 7.4 GBq/cy

Dose < 23 Gy to kidneys or 2 Gy to RM

limiting organ: kidney (197/200 pts)

- In 50% of pts, more than 4 x 7.4 GBq could be administered
- up to 10 cycles
- fewer than 4 cycles in 20% of pts

Hp: plus de cycles, fixée dose aux reins plus grand effet sur les tumeurs

FIGURE 7. Maximum tolerable number of cycles with respect to absorbed doses to bone marrow and kidneys for 200 patients.

Clinical outcome based on a dosimetry - ¹⁷⁷Lu-PRRT

Treatment planning: n. of cycles of 7.4 GBq up to reach 23 Gy to kidneys

Pts with absorbed dose to the kidneys 23 Gy \rightarrow higher total activity in most patients \rightarrow higher OS Pts with CR/PR \rightarrow higher OS vs. patients with SD

Consistent advantage of personalized treatement !

Garske-Román U, EJNMMI 2018

Eur J Nucl Med Mol Imaging (2017) 44:1490-1500

Personalized ¹⁷⁷Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: a simulation study

Michela Del Prete^{1,2} • François-Alexandre Buteau^{1,2} • Jean-Mathieu Beauregard^{1,2}

prescribed renal absorbed dose: 23 Gy in 4 cy

44 ± 17 GBq ~ 1.5-fold increase of activity vs. standard 30 GBq in 4 cy

Kidney 22 ± 3 Gy RM: 1.6 ± 0.6 Gy tumor 165 ± 85 Gy

significant increase of tumor absorbed dose, to increase the therapeutic benefit while limiting toxicity

4 cycle protocol based on dosimetry

Roth D, et al. J Nucl Med 2022;63(3):399-405.

Térapies combinées: EBRT et RIV:

combination treatmenti is a hallmark of cancer therapy, Hobbs JNM 2013

rationale

- ✓ to increase efficacy
- ✓ to includere lesions not alwyas visible (advantage of a systemic therapy)
- ✓ higher tolerabiliy (different OARs in PRT and EBRT)
- ✓ managment of a patient needing PRRT after EBRT (or viceversa)

anomalous case, EBRT after PRRT – worts dosimetry scenario

Pancreatic NET

¹⁷⁷Lu-PRRT 27.9 GBq

Liver met (200 ml) not responding to PRRT

EBRT prescribed, but

Kidenys (OARs of PRRT) are involved in EBRT irradiation

isodose distribution in a coronal plan

DVHs for the target and OARs. (PTV : planning target volume.

Clearly, dosimetry IS NOT the UNIQUE predictive parameter (cannot be) but an essential piece of information, as well as

hystology

clinical hystory

clinical parameters

radiobiology / radiosensitivity

genetics

radiomics?....

INDIRECT ACTION

DIRECT

СТ

⁶⁸Ga-DOTATOC-PET/CT ¹⁸FDG-PET/CT

Résumé - 1

L'avantage Clinique que la dosimétrie apporte à la RIV est de plus en plus evidente

La dosimétrie n'est pas le seul paramètre predictif mais elle représente une pièce cruciale de la radiobiologie; il faut la combiner avec la biologie, le profil génétique, les dates cliniques pour dériver des modèles plus ciblés

Donc, il est évident que pour entrer dans les trials prospectifs et améliorer les protocols, la dosimétrie a besoin du support des modèles radiobiologiques

L'étude des effets RB sont à la base del la personalization de la RIV, pour bien sélectionner les patients, éviter la toxicité et les sous-traitements

Résumé - 2

Les models RB extrapolés de la EBRT et adaptés à la RIV ont été capables de donner une première interprétation des effets (inhomogeneité, cycle), et des corrélations dose-effets enrichissantes

Ils sont utiles aussi dans les cas de traitements combinés de RIV et RT

- Ces modèles peuvent représenter une référence initielle, mais ils faut les approfondir ou dévélopper des models spécifiquement adressés aux différentes applications, radionucléides (beta, alpha...)
 - La recherche radiobiologique pré-clinique est très importante

merci beaucoup

marta.cremonesi@ieo.it

SIRT – Radioembolization des lésions du foie

Traitement locorégionale

locoregional treatment with (90Y) microspheres injected into the hepatic artery. Microspheres are able to release high radiation doses to malignant hepatic lesions: **HCC** or liver **metastases**

- liver mainly supplied from the portal vein; tumours mainly supplied from hepatic artery (80-100%)
- tumours are passively targeted, microspheres are trapped in the arterioles within the tumour

- **HCC**
- Métastases épatiques
- 9°Y microsfères en verre
- 9°Y microsfères en résine

•••

Pan CC, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S94-100

Table 1 | Characteristics of ⁹⁰Y-microspheres (6, 20, 24).

Commercial name	SIR-Spheres®	TheraSphere®
Manufacturer	Sirtex Medical, Lane Cove Australia	Therasphere BTG, Ontario, Canada
Material	Resin	Glass
⁹⁰ Y sphere production	Bound to resin, attached to sphere surface	Embedded in a glass matrix
Particle size (µm)	32.5±2.5 (range: 20–60)	25±5 (range: 20–30)
Activity per sphere (Bq)	50 (range: 40–80)	2500 at the reference time
Number of spheres per GBq (million)	20 (mean)	0.4 at the reference time
Shelf-life	1 day	12 days
Specific gravity	Low (1.6 g/cc)	High (3.6 g/cc)
Embolic effect	Moderate	Mild
Activity available (GBq)	3	From 3 to 20, with step 0.5
Number of spheres in 3GBq	40–80 million	1.2 million at the time of calibration
Approved for	USA: HCC; Outside USA (especially Europe and Australia): unresectable liver tumors (HCC and metastases)	USA: colorectal carcinoma Outside USA (especially Europe and Australia): HCC and metastases
Handling for dispensing	Required	Not possible
Splitting one vial for two or more administrations	Possible	Not possible
Necessity of contrast medium guidance during administration	Yes	No

Tipiquement: α/β 2.5 Gy foie, 10 Gy tumeur; T_{rep} 2.5 h foie, 1.5 h tumeur

Prémières observations: pourquoi?

Réponse vs. dose absorbée à la tumeur

toxicité fatale; limite recommandée par l'auteur ou de toxicitée observée; traitement bien toléré

Evidences derived up to date

Tumor response is correlated to absorbed dose

The mean non tumoral WHOLE liver dose *NTWLD* is a prognostic factor for toxicity

→ dose thresholds for
toxicity with segmental,
lobar or whole liver do differ
→ Separated in models

RE: 40 Gy well tolerated (resin) 75 Gy \rightarrow **15% of toxicity (HCC)** EBRT: TD_{50%} = 30 Gy

Abbott EM, JNM 2020

Strigari, JNM 2010; Chiesa C, EJNMMI 2015

Willowson KP, et a. EJNMMI Res. 2017; 7(1):46

Clinical and imaging-based prognostic factors in radioembolisation of liver metastases from colorectal cancer: a retrospective exploratory analysis.

gene RAS mutation status

CMR

Alsultan AA, JNM 2021 Mar. ahead of print

Dose-response and dose-toxicity relationships for yttrium-90 glass radioembolization in patients with colorectal cancer liver metastases.

Metabolic response category @ 3 mo at tumor (L) and patient level (R)

Glass spheres, HCC and differents liver mets

Dewaraja Y et al., 2019

resin spheres – liver mets

Willowson K, et al. EJNMMI Res. 2017;7(1):46

Clinical and imaging-based prognostic factors in radioembolisation of liver metastases from colorectal cancer: a retrospective exploratory analysis.

van den Hoven AF, et al. JNM. 2016;57(7):1014-9

Insights into the Dose-Response Relationship of Radioembolization with Resin 90Y-Microspheres: A Prospective Cohort Study in Patients with Colorectal Cancer Liver Metastases.

Flamen P, et al. PMB 2008;53:6591-603

Multimodality imaging can predict the metabolic response of unresectable colorectel livermetastases to radioembolization therapy with yttrium-90 Labeled resin micropheres.

Rhee TK, et al. Ann Surg 2008;24 7:1029-35.

90Y Radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience.

Lau WY, et al. IJROBP 2012;82(1):401-7

Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres.

Campbell JM, et al. IJROBP 2009; 74 :313-20.

Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-speci®c method using single photon emission computed tomography and positron emission tomography.

glass spheres - HCC

Chiesa C, Mira M, Maccauro M, et al.

Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging. 2015;42(11):1718-1738.

Tumour Response - EASL

Mean Absorbed Dose [Gy]

Liver toxicity

resin spheres - HCC

J Nucl Med. 2010 Sep;51(9):1377-85.

Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. Strigari L, Sciuto R, Rea S, Carpanese L, Pizzi G, Soriani A, Iaccarino G, Benassi M, Ettorre GM, Maini CL.

73 HCC patients

TD₅₀ = **52 Gy** BED - liver: α/β = 2.5 Gy, T_{ren}= 2.5 h; Tumour: α/β = 10 Gy, T_{ren}= 1.5 h

Tumour response: TCP - RECIST and EASL criteria

TCP fitted with the Hp of 2 different cellular T radiosensitivity, obtaining 2 α -values (0.001 and 0.05 G y), lower than in EBRT (α =0.010.1/Gy) - Tai et al.

@ D>200 Gy: CR or PR.

D<200 Gy, higher response with EASL (changing T structure) vs. RECIST criteria (T shrinking).

@ D = 110 Gy, CR or PR: 74% (EASL), 55% (RECIST).

Traitement combiné de 2 radiopharmaceutiques pour NHL based on Dose, EUD, EUBED

Hobbs *RF, et al.* Radiobiologic optimization of combination radiopharmaceutical therapy applied to myeloablative treatment of non-Hodgkin lymphoma. J Nucl Med. 2013;54(9):1535-42.

methodology to hypothetical myeloablative treatment of NHL patients using ¹³¹I-tositumomab, or Bexxar (B) and ⁹⁰Y-ibritumomab tiuxetan, or Zevalin

 $\begin{cases} MTD_{lu} = A_Z d_{Z,lu} + A_B d_{B,lu} \\ MTD_{li} = A_Z d_{Z,li} + A_B d_{B,li} \end{cases}$

Parameter	NHL	Lungs	Liver	Kidneys
α/β (Gy)	8.6 (28)	3.3 (29)	2.5 (30)	2.6 (18)
λ _B (h ⁻¹)	N/A	0.0106 (31)	0.0124 (31)	0.0115 (31)
λ _Z (h ⁻¹)	N/A	0.0182 (32)	0.00728 (32)	0.00957 (32)
μ (h ⁻¹)	1.3 (33)	0.46 (34)	0.28 (35)	0.25 (18)

Radiobiologic Parameters Used

Tandem PRRT avec ¹⁷⁷Lu-DOTATOC and ⁹⁰Y-DOTATOC

Le BED a été utilisé pour combiner les effects des deux RIV avec différents radionucéides et dose/cycle

Only grades I-II of kidney toxicity in the majority of cases

Preliminary data by Grassi et al. (EANM 2017)