

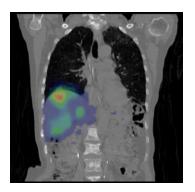
Dosimetric impact of respiratory motion compensation in radioembolization

L. Vergnaud^{1,2}, A. Robert^{1,3}, T. Baudier^{1,2}, S. Parisse-Dimartino², F. Khayi², P. Boissard², S. Rit¹, JN. Badel² et D. Sarrut^{1,2}

¹CREATIS, Centre Léon Bérard, CNRS UMR 5220, INSERM U 1044, Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France.

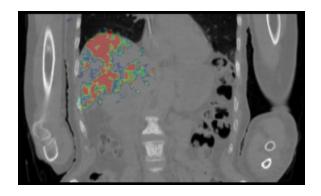
²Département de Médecine Nucléaire, LUMEN, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France.

³Kitware SAS, 6 Cours Andre Philip, 69100 Villeurbanne



Radioembolization

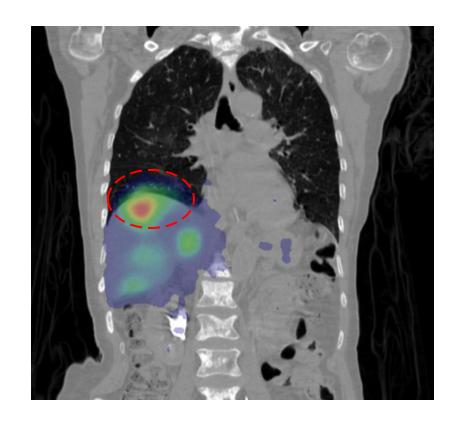
Pre-treatment


- Treatment planning
- ^{99m}Tc-MAA injection
- SPECT/CT acquisitions of gamma photons (140 keV)
- ^{99m}Tc-MAA biodistribution is a prediction of ⁹⁰Y microspheres biodistribution

Optimisation of the treatment for each patient

Post-treatment

- Verification of treatment
- Injection of ⁹⁰Y microspheres
- PET/CT acquisition



SPECT/CT acquisition

- Approximately 15 minutes of acquisition time
- Liver movements related to respiratory movements
- Artifact ("blur") in tomographic reconstruction

What is the dosimetric impact of respiratory movement?

Respiratory movement correction

Several methods can be used:

- External device [Beach and al., IEEE NSS, 2005]
- Fluoroscopic images in addition to nuclear images [Dietze and al., Physics in Medicine and Biology, 2021]
- Data-driven approaches
 [Sanders and al., IEEE Transactions on Medical Imaging, 2016; Robert and al., IEEE Transactions on Radiation and Plasma Medical Sciences, 2021]

Correction applied mainly for myocardial perfusion [Kortelainen and al., Annals of Nuclear Medicine, 2019; Kovalski and al., Journal of Nuclear Medicine, 2007]

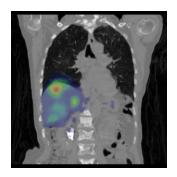
The dosimetric impact of respiratory movement was assessed **only on phantoms not on real data** [Bastiaannet and al., Medical Physics, 2017]

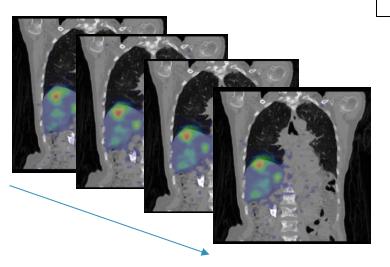
This evaluation was performed **only on post-processing PET imaging** [Osborne and al., Nuclear Medicine Communications, 2018]

Reconstruction algorithms

Three SPECT reconstruction algorithms:

3D Reconstruction


[Robert and al., IEEE Transactions on Radiation and Plasma Medical Sciences, 2021]


4D Reconstruction

[Robert and al., IEEE Transactions on Radiation and Plasma Medical Sciences, 2021]

3D motion compensated Reconstruction

[Robert and al., Fully 3D Image Reconstruction, 2021]

Compensation on one of the phases

8 phases (1 reconstruction / phase)

Motion amplitude

Limitation:

- No 4D CT available (attenuation correction)

compensated

Methodology:

Registration of 3D compensated reconstructions on the extreme phases

Patient data

31 treatments received by 29 patients (14 women and 15 men)

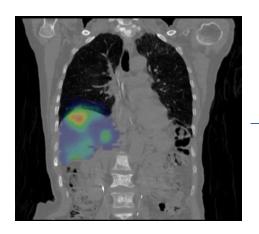
Pathologies

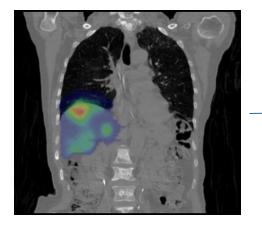
- Hepatocellular carcinoma (HCC): 10/29
- Cholangiocarcinoma: 3/29
- Metastasis of colorectal cancers: 3/29
- Metastasis of breast cancer: 7/29
- Other: **6/29**

Microspheres

- SIR-Sphères[®]: **11/29**
- ThéraSphères[®]: 18/29

Volumes of interest


- Contours of liver, lungs and lesions on CT
- Perfused Liver = intersection between the liver and 5% of maximum SPECT
- For other contours, use of Boolean operations:
 - **Healthy Liver** = Liver Lesions
 - **Healthy Perfused Liver** = Perfused Liver Lesions
 - **Hepatic reserve** = Liver Perfused Liver Lesions



Dosimetry

SPECT normalisation of activity to that present in the liver and lungs = distribution

Monte Carlo simulation: 1 MBq of ⁹⁰Y during 1s

Dose rate map (Gy/s)

Scaling to actual injected activity

Volume-wide average dose rate

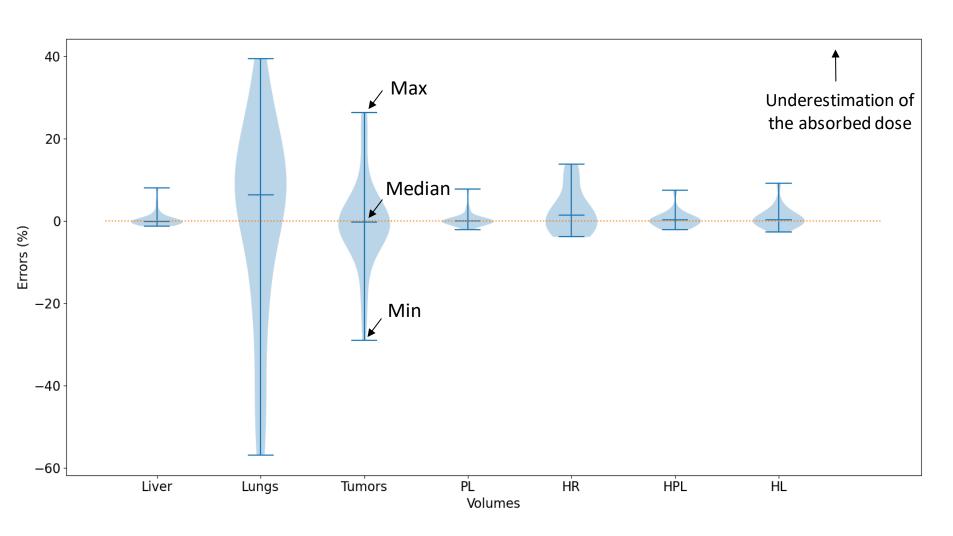
Integration taking into account only the radioactive decay = **Dose**

Lung Shunt Fraction (LSF) and TN ratio

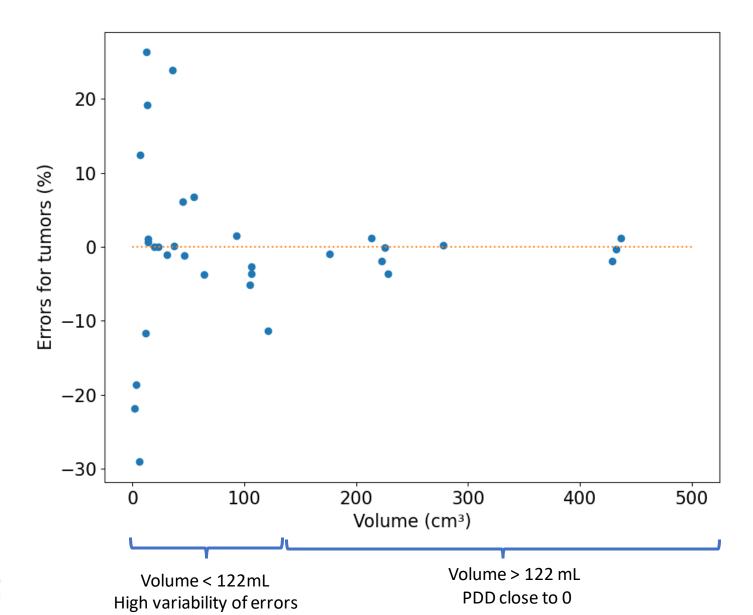
LSF formula [Levillain et al., European Journal of Nuclear Medicine and Molecular Imaging, 2021]:

$$LSF[\%] = \frac{C_{Lungs}}{C_{Lungs} + C_{Liver}} \times 100$$

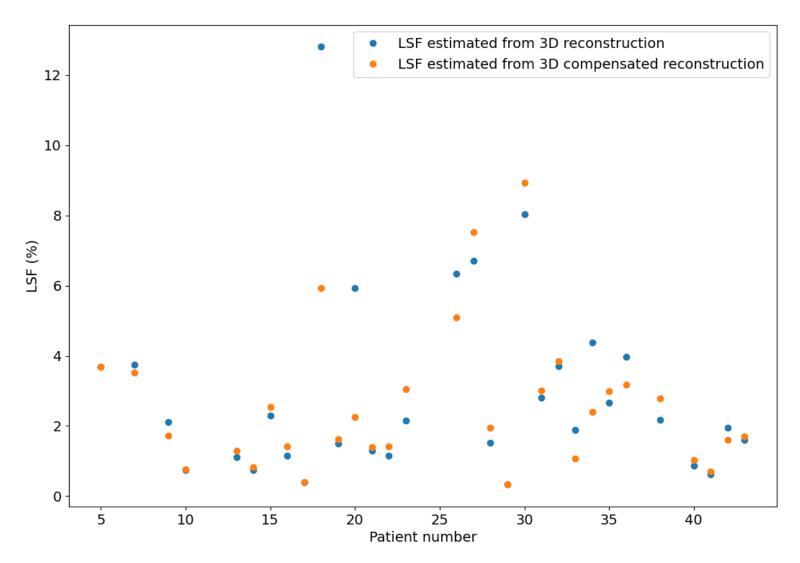
TN formula [Levillain et al., European Journal of Nuclear Medicine and Molecular Imaging, 2021]:


$$TN = \frac{C_{Tumor}/V_{Tumor}}{C_{HealthyLiver}/V_{HealthyLiver}}$$

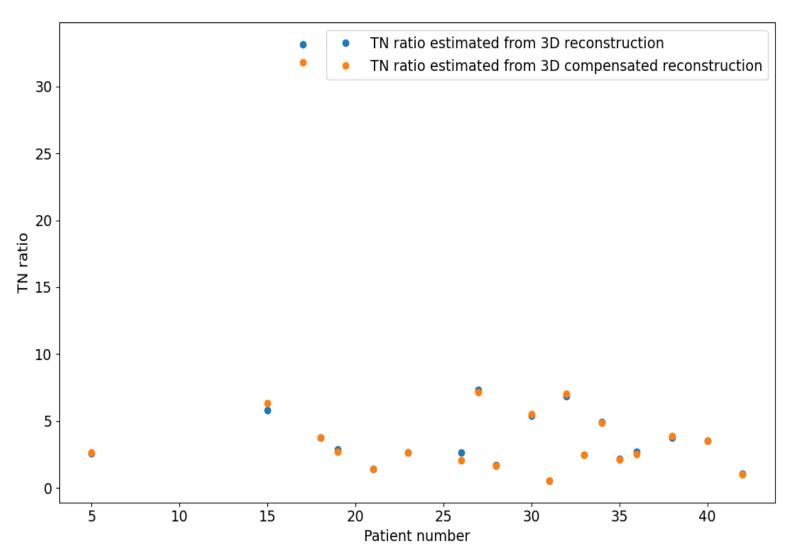
Absorbed dose differences


PL: Perfused Liver, HR: Hepatic Reserve, HPL: Healthy Perfused Liver, HL: Healthy Liver

Dose differences and volumes



LSF



TN ratio

Conclusion and perspectives

- 3D vs 3D compensated: no significant absorbed dose systematic differences
- However, for some tumors, differences can be important (> 10%)
- For lesions with a volume <122 mL

Perspectives:

- How to detect when motion correction is needed?
- Does correction of respiratory movement have an impact on ⁹⁰Y prescription?

Acknowledgements

Thank you to Dr. Sandrine Parisse-Dimartino (CLB), to the medical physicist Philippe Boissard, PhD (CLB), to the radiopharmacist Fouzi Khayi and to the whole TOMORADIO team (CREATIS)!

