

Automated microfluidic production of radiopharmaceuticals for theranostics

- Laurent Tanguy, Partnerships manager, PMB-ALCEN

Synopsis

Microfluidic Production of Radiopharmaceuticals

- Presentation of iMiGiNE systems
- Microfluidic advantages for radiochemical synthesis
- Latest results and future developments in preclinical and clinical

What is iMiGiNE for?

- Precision medicine and personalized medicine means there is a growing need for « a la carte » production of radiopharmaceutical. Actual manufacturing network is not set-up for this.
- Hotcell based lab are too expensive to be installed and operated in every radiopharmacy.

Allow production on site, on demand of various radiopharmaceuticals

An automated radiopharmacy

Produce radiosotopes
 Transfert to radiophare

• Transfert to radiopharmacy

Automated

Cyclotron

Radiopharmacy

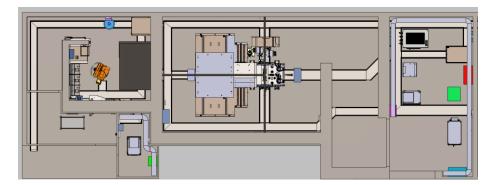
QC

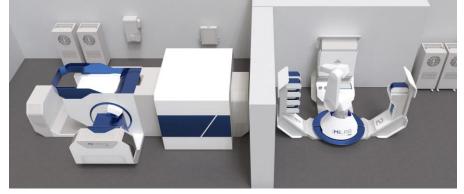
• Synthesis, sterile filtration and syringe filling

GMP controlled conditions

• For now, as per standard methods

Process control


Quality assurance



Installed closed to PEC/CT camera

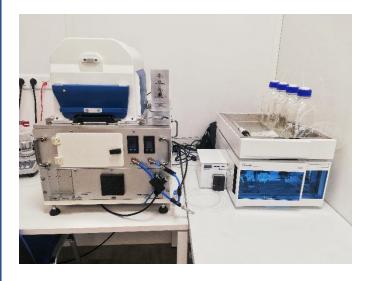
- Requires ~100m² whatever the number of produced radiopharmaceuticals
- Manufacturing of radiopharmaceuticals « à la carte »
- Access to short half-life radioisotopes (¹¹C, ¹³N, ¹⁵O)

iMiGiNE – the different systems

iMiTRACE

PMB

iMiLAB


Cyclotron 12 MeV

- ¹⁸F, ¹¹C, ¹³N, ⁶⁸ Ga
- Single doses or small batches
- Easy to maintain

Radiopharmacy

- Entirely automatized
- Single doses or small batches
- Various tracers

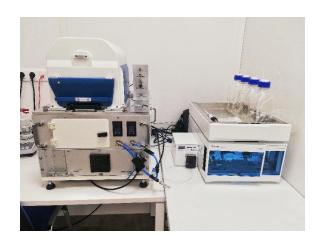
IMIDEV

Radiosynthesis module by microfluidics

- Single doses or small batch
- Open system to set-up synthesis into the microfluidic cassette

Transition from R&D to clinic

iMiDEV


- Intuitive process design
- Easy to use microfluidic device

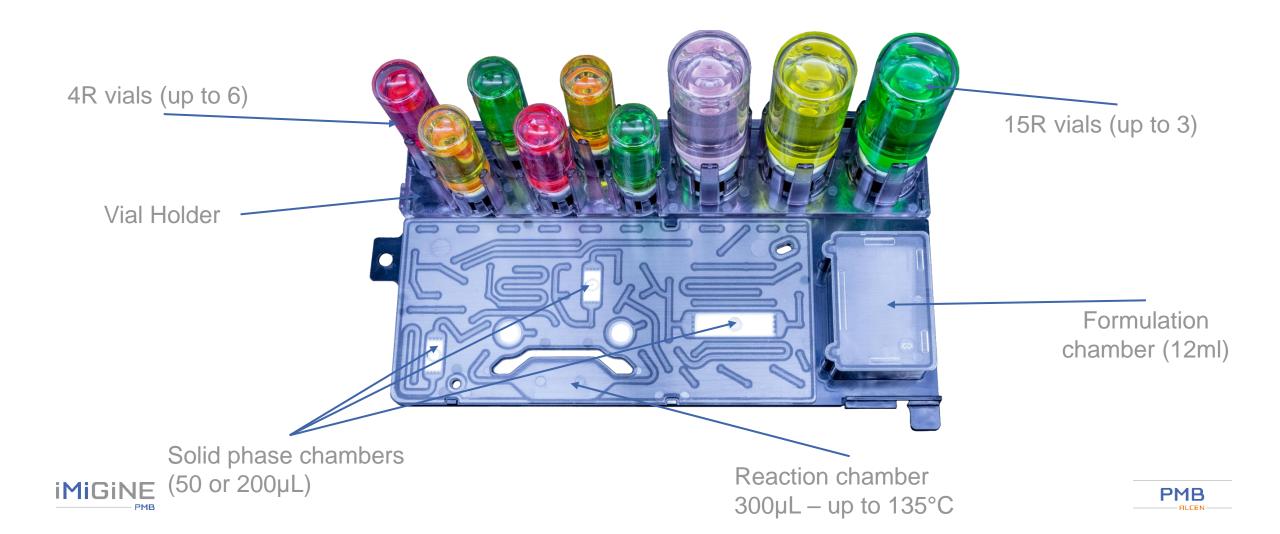
Radiochemistry

R&D

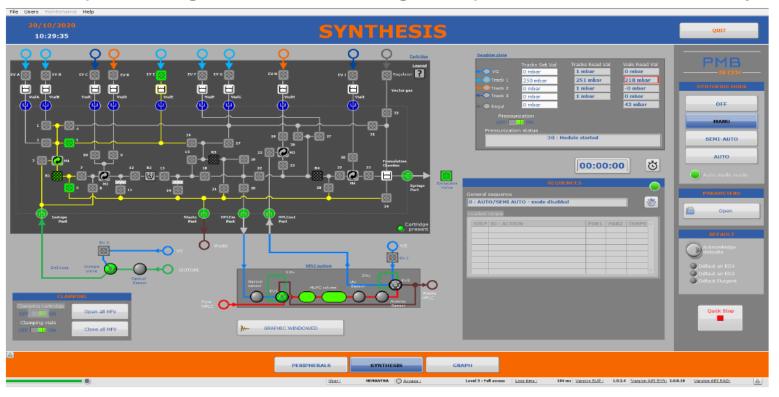
- Low reagent consumption
- Low initial investment

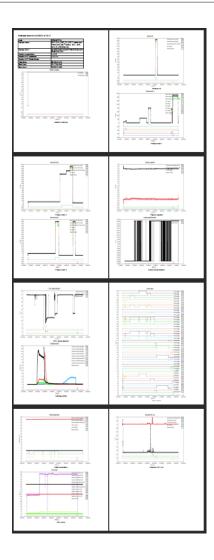
 Easy installation in existing premices

Direct transfer of the synthesis developed Preclinical studies with iMiDEV to iMiLAB **IMIGINE** Clinical studies **PMB MILAB** Multi tracers On site, compact Automated, ensure maximal Clinical reproducibility from site to site practice Attention paid to details for


maximum SRA

PMB


Microfluidic cassette


Only one fully integrated and unique cassette for all tracers and both systems

HMI - Overview

- Both system uses the same dedicated intuitive HMI
 - Automated or manual recipe can be executed
 - Reports are generated containing all important data for traceability

Synopsis

- Microfluidic Production of Radiopharmaceuticals
 - Presentation of iMiGiNE systems
 - Microfluidic advantages for radiochemical synthesis
 - Latest results and future developments in preclinical and clinical

Microfluidics & radiochemistry

Expectations and promises are very high

- Improved reaction speed and selectivity
- Improved yield and radiochemical purity
- Reduction of consumption of reagents
- Integrated and closed system
- Improved specific activity
- Smaller footprint
- Better, simpler and more targeted production of radiotracers for patients

Microfluidics & radiochemistry

Microfluidics in radiochemistry

- Used since beginning of 2000
- Applied to various tracers based on ¹⁸F, ⁶⁸Ga mainly but also ¹¹C
- Applied to many different synthesis ways and strategies
- Several companies and universities have developed advanced solutions
 - For example: GE Healthcare, Trasis, Advion
 - Most solutions are either lab prototypes or dedicated to one or few radiotracers.
- There is a lack of an integrated, developed, commercially available solutions to perform directly microfluidic synthesis of radiotracers

Synopsis

- Microfluidic Production of Radiopharmaceuticals
 - Presentation of iMiGiNE systems
 - Microfluidic advantages for radiochemical synthesis
 - Latest results and future developments in preclinical and clinical

PMB partners

They trust us in France and Europe

iMiDEV - NANCYCLOTEP

Installation Sept. 2019

Mars-Avril 2020 Août-Septembre 2020

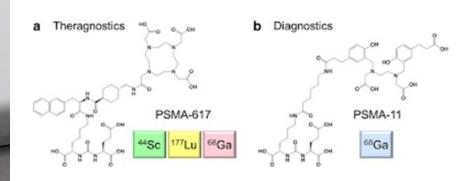
Janvier-Mars 2021

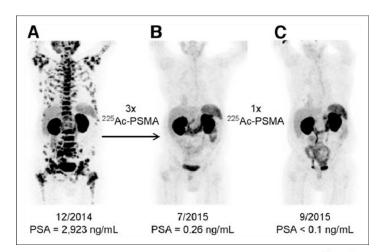
Avril 2021 Juin 2021 Novembre 2021

Goals: ¹⁸F, ⁶⁸Ga

¹⁸F-radiochemistry [¹⁸F]NaF ⁶⁸Ga-radiochemistry [⁶⁸Ga]Ga-Citrate

⁶⁸Ga-radiochemistry [68</sup>Ga]Ga-PSMA-11


Ovdiichuk *et al. Lab Chip* 2021


ESRS'21 Ovdiichuk *et al. Nucl. Med. Biol.* 2021 Marquage dans R2

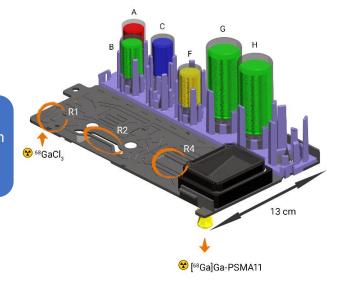
[18F]FTAG

Optimisation [68Ga]Ga-PSMA-11

- [68Ga]Ga-PSMA11:
- Diagnostic molecule for prostate cancer with PET imaging
- Companion diagnostic molecule for internal radiotherapeutical approaches

iMiDEV - [68Ga]Ga-PSMA11

Conventional kit (TRASIS)

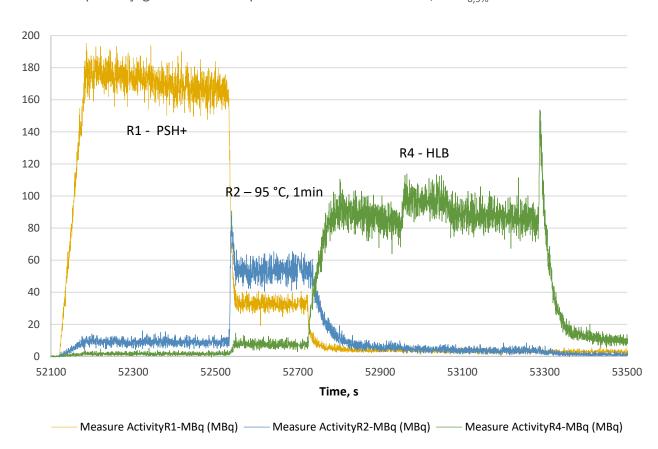

Microfluidic cassette

Activity concentration and elution

Control of mix with precursor


Filling of reaction chamber (300µL) and synthesis

Formulation in C18


IMIGINE

- Vial A: elution solution
- Vial B: NaCl 0,9% for rincing R1
- Vial C : PSMA11 in NaAc
- Vial F: EtOH for formulation
- Vial G: NaCl 0,9% for rincingR2
- Vial H: NaCl 0,9% for formulation

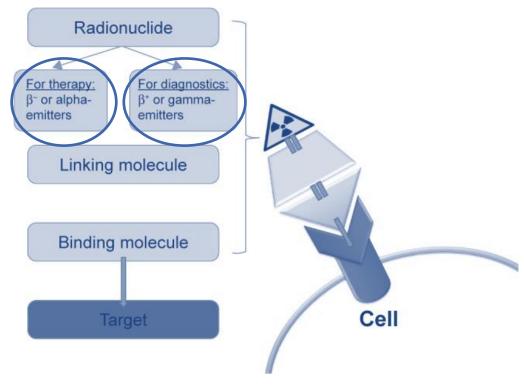
iMiDEV - [68Ga]Ga-PSMA11

- 1. Activity trapping
- 2. Elution and mix with precursor followed by 1' heating at 95°C
- **3. SPE / formulation**: accrochage du [68Ga]Ga-PSMA-11 brut sur C18/HLB suivi par rinçage & élution du produit final avec 10% EtOH/NaCl_{0.9%}

Results and expectations

Performed synthesis in iMiDEV have already demonstrated

- Faster reaction time
- Increased radiochemical purity and incorporation yield
- Adaptability to different classical PET radioisotopes (⁶⁸Ga, ¹¹C, ¹⁸F)
- Fully automated synthesis of various radiotracers
- European Pharmacopeia conform production of radiotracers
- Comparable diagnostic performances with standardly produced tracers


What's next?

For diagnostic

- Increase the radiotracers library and especially for
 F18 based tracers
- Finalize ⁶⁸Ga-PSMA and other ⁶⁸Ga- peptide synthesis (FAPI, DOTATOC, DOTATATE)

For therapy

 Show performance of the cassette with molecules and radioisotopes suitable for therapy

Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, Feldmann G, Ahmadzadehfar H, Essler M. Theranostics in nuclear medicine practice. *Onco Targets Ther.* 2017;10:4821-4828

One cassette for diagnostic and therapeutic molecules in preclinical and clinical

AMIDEX Project granted with C2VN/CERIMED

First granted collaborative project between C2VN/CERIMED and PMB:

MiRTxGlio

Microfluidic radiosynthesis for theranostics of glioblastoma multiform

Thanks for your attention!

Special thanks to:

- Olga Ovdiichuk at Nancyclotep
- Hemantha Mallapura at Karolinska Institute
- PMB's team

For further info, please check:

O. Ovdiichuk et al, Lab Chip, 2021,21, 2272-2282

Future presentations at ISRS 2022

Laurent Tanguy email: Itanguy@pmb-alcen.com

