Vecteurs actuels de la thérapie par radionucléides

Tony Lahoutte, MD, Phd

A multi-discplinary research team focussed on the development of drugs for biomedical <u>imaging</u> and <u>therapy</u>

VRIJE UNIVERSITEIT BRUSSEL – UZ BRUSSEL

Nuclear Medicine department

- ▶ 2 Siemens PET/CT camera's
- ▶ 2 Siemens SPECT/CT systems

Brussels Imaging Pharmacy:

- ▶ 18/9 Mev Cyclotron
- ▶ 3 research Hot cells
- ▶ 6 GMP Hot cells

In vivo Cellular and Molecular Imaging - ICMI

- Radiochemistry unit
 - ▶ Alpha lab
 - ▶ Beta/Gamma lab
- ▶ Vector development unit
 - ▶ Pre-GMP and GMP
- ▶ Cell culture facilities
 - **▶** FACS

- Preclinical imaging
 - ▶ MicroSPECT/CT
 - ► MircoPET/CT (2022)
 - ▶ Intravital Microscopy (2022)
 - Bioluminescence
 - Fluorescence unit
 - ▶ Ultrasound unit

DISCLOSURES

Founder/Shareholder/Consultant

Precirix NV (Chief Science Officer)

ABSCINT NV (Medical Director)

TARGETED RADIONUCLIDE THERAPY (TRNT)

- Tumor cells with a specific protein over-expressed on their surface
- Accessible for circulating agents
- Guide a therapeutic radionuclide to the expressed protein using a target-specific vehicle

CONCEPT THERANOSTIC APPROACH OF TRNT

- The goal of TRNT is to selectively deliver radiation to cancer cells and/or diseased tissue with minimal toxicity to surrounding normal tissues
- Integration of imaging to detect the presence of a molecular target for which a specific treatment is intended
- Imaging with a related molecular vehicle
- ⇒ support for dose estimation
- ⇒ treatments based on dose-effect relationships
- ⇒ monitor response to treatment

CONCEPT TARGETING

CONCEPT TARGETING

VECTORS

De Vos et al., Expert Opin Biol Ther, 2013

⁶⁸Ga-Octreo-PET

- **Target**: somatostatine receptor
- **Vector**: peptide
- Overexpressed on cell membrane in neuro endocrine cancers

Diagnosis and Therapy

FDA approved drug: Lutathera (Novartis)

⁶⁸Ga-PSMA-PET

PSMA

- High expression on prostate cancer cells
- Detection of metastatic prostate lesions
- Vector: small molecule

Normal biodistribution

- Intense salivary and lacrimal glands
- Intense kidney
- Moderate liver-biliary elimination

⁶⁸Ga-PSMA-PET

PSMA

- High expression on prostate cancer cells
- Detection of metastatic prostate lesions

Treatment

• Beta and alpha irradiation

¹⁷⁷Lu-PSMA treatment

A look into the current industrial developments ...

Peptides Minibodies

Peptides Minibodies

Small molecule Antibodies

Small molecule Antibodies

	Targeting Molecule	Target	Radioactive Isotope	Phase I	Phase II	Phase III	Commercial
Prostate	Small molecule	PSMA ⁽¹⁾	⁶⁸ Ga	TLX591-CDx (68Ga-PSMA-11, Illuccix®)			Imaging
	Antibody	PSMA	¹⁷⁷ Lu	TLX591 (¹⁷⁷ Lu–rosopatama	b)		Therapy
	Antibody	PSMA	²²⁵ Ac	TLX592 (²²⁵ Ac-RADmAb®)			Therapy (2 nd Gen)
	Small molecule	PSMA	^{99m} Tc	TLX599-CDx (^{99m} Tc-iPSMA)*		Imaging/Surgery
	Small molecule	PSMA	⁶⁸ Ga	TLX591-Sx (68Ga-PSMA-IR	Dye)		Imaging/ Surgery
Kidney	Antibody	CA9 ⁽²⁾	⁸⁹ Zr	TLX250-CDx (89Zr-girentux	timab)		Imaging
	Antibody	CA9	¹⁷⁷ Lu	TLX250 (¹⁷⁷ Lu–girentuxima	b)		Therapy
Brain	Small molecule	LAT-1 ⁽³⁾	¹⁸ F	TLX101-CDx (18F-PET)			Imaging
	Small molecule	LAT-1	131	TLX101(¹³¹ I-IPA)			Therapy
BMC/RD ⁽⁴⁾	Antibody	CD66 ⁽⁵⁾	^{99m} Tc	TLX66-CDx (99mTc-besileso	mab, Scintimun®)		Imaging
	Antibody	CD66	90Υ	TLX66 (90Y-besilesomab)			Therapy

Shaded arrows indicate expected development stage in the next 12 months

- 1. Prostate-specific membrane antigen.
- 2. Carbonic anhydrase IX.
- Large amino acid transporter 1.
- 4. Bone Marrow Conditioning / Rare Diseases.
- 5. Cluster of differentiation 66.

* Registry Study

With the exception of Telix's 88Ga PSMA-11 imaging agent in Australia and the United States, none of Telix's products have received a marketing authorisation in any jurisdiction. Any use of Telix products is on an investigational basis only.

Antibodies

'Fast clear linker technology'

Antibodies
Small molecule

Peptide

Fibroblast Activation Protein

Phase I trial with 177 Lu-FAP-2286

FAP-2286

⁶⁸Ga-FAP-2286 Shows High Uptake in Patient with Osteosarcoma

Source: Thomas Hope (UCSF). Data on File. 2021.

Peptides

Peptides
Small molecules

Monoclonal Ab

	Phase	
Oncology	I	²²⁷ Th-Pelgifatamab Corixetan (PSMA-Targeted Thorium Conjugate)
Oncology	I	HER2-TTC (HER2-Targeted Thorium Conjugate)

Peptides
Small Molecules

PRECIRIX®

Single domain antibodies

Single domain antibodies

BREAST CANCER TARGETING: PRIMARY CANCER

PHASE II BRAIN METASTASIS TRIAL

TUMOR AND HEALTHY TISSUE RADIATION NANOBODY VS. TRASTUZUMAB

FIRST IN HUMAN STUDY: CAM-H2 131I-SGMIB-ANTI HER2

CURRENT VECTORS CONCLUSION

- Current success stories are based on peptides & small molecules
- New peptides and small molecules are developed for a range of cancer targets, however finding strong binders is complicated
- Existing monoclonal antibodies against cancer targets are 'refurbished' towards radiopharmaceuticals, however long residence time in the circulation requires innovative linker methods to limit toxicity
- Antibody fragments can be generated against any target and approach the PK properties of peptides
- All developments are matched by radionuclide diagnostic for patient selection

