

Dosimetric workflow adapted to a variable number of SPECT/CT acquisitions for ¹⁷⁷Lu-DOTATATE treatments

L. Vergnaud^{1,2}, Al. Giraudet², A. Moreau², J. Salvadori³, A. Imperiale³, T. Baudier^{1,2}, JN. Badel^{1,2} et D. Sarrut^{1,2}

¹CREATIS, Centre Léon Bérard, CNRS UMR 5220, INSERM U 1044, Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France.

²Département de Médecine Nucléaire, LUMEN, Centre Léon Bérard, 28 Rue Laennec, 69008, Lyon, France.

³ICANS - Institut de cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200 Strasbourg, France.

¹⁷⁷Lu-DOTATATE therapy

Standardized treatment:

Several SPECT/CT acquisitions are needed to follow the ¹⁷⁷Lu biodistribution.

In clinical practice, it is not always possible to have multiple SPECT/CT acquisitions for each cycle.

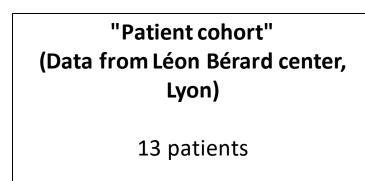
How to estimate the absorbed doses to organs at risk as a function of the number of acquisitions available?

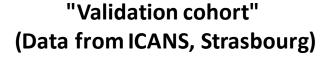
Single Time-Point methods

- Reducing the number of acquisitions by selecting those that result in the lowest possible error [Sundlov and al. 2018, Chicheportiche and al. 2020].
- Dosimetric workflow **based on only one acquisition** [Willowson and al. 2018, Madsen and al. 2019, Hanscheid and al. 2018, Sandstrom and al. 2020, Zhao and al. 2019, Devasia and al. 2020]
 - MIRD formalism (S-values pre-calculated on phantoms)
 - Mono-exponential fitting for the Time Activity Curve

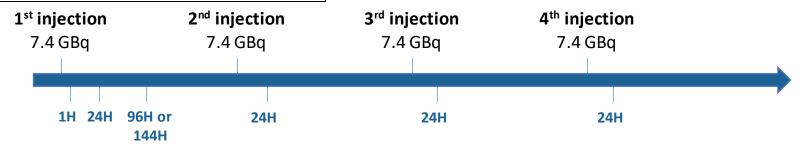
Simplification of the calculation of cumulative activity
[Madsen et al. 2019, Hänscheid et al. 2018]

Reuse of patient
pharmacokinetics
from a previous cure
[Willowson et al.
2018, Garske et al. 2012]


Use of average pharmacokinetics of other patients + triexponential model [Jackson et al. 2020]



Data available



Not all SPECT/CT is available for all patients

7 patients

Only cycles 1 and 4

SPECT/CT acquisitions performed at Léon Bérard center

Dosimetric workflow (1)

Reconstruction SPECT

CT

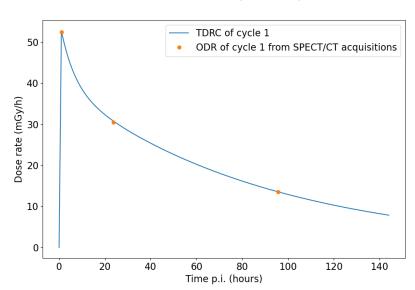
(43)

3 - Segmentation

Left and right kidneys, liver, spleen and three surrogates of bone marrow (L2-L4 [Ferrer and al. 2010], L1-L5 and T9-L5 [Hagmarker and al. 2019])

Dosimetric workflow (2)

4 – Dose rate at a specific time

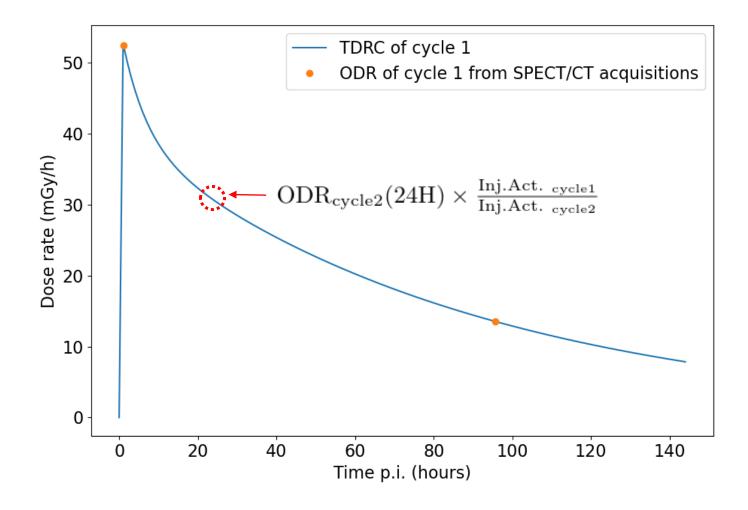

Dose rates at the voxel level (Gy/s)

Average Organ Dose Rate: ODR (Gy/s)

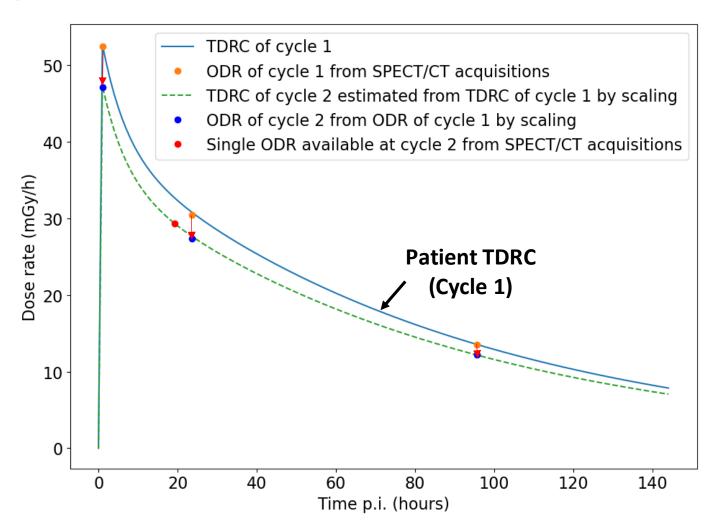
> + Dose rate

scaling (1MBq simulated only)

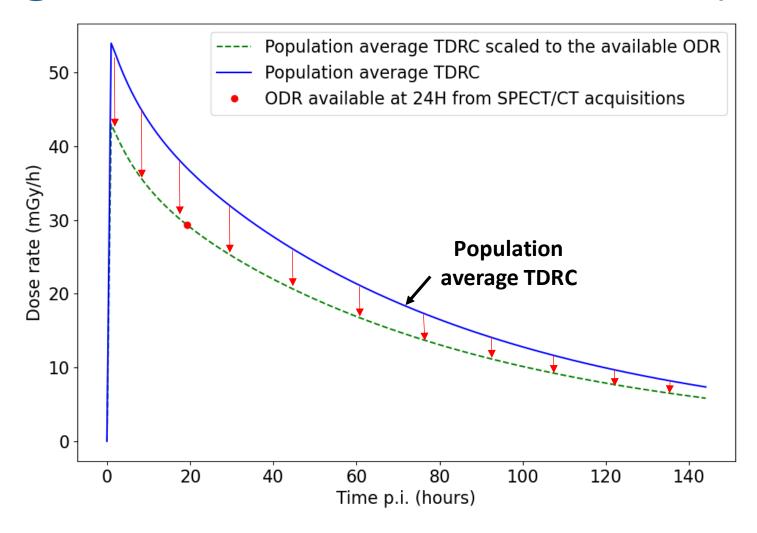
5 – Fit and integration of the Time Dose Rate Curve (TDRC)

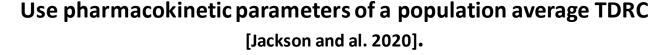

= Reference method (tri-exponential function [Jackson and al. 2020])

Missing Time-Point method (M1)


Approximation of the ODR missing at 24H to use a tri-exponential fitting at the first cycle.

Single Time-Point Intra method (M2)


Reuse pharmacokinetic parameters estimated at cycle 1 for following cycles.



Single Time-Point Inter method (M3)

Comparison simplified method vs reference method

- We compare simplified methods (M1, M2 and M3) to the reference method (three SPECT/CT acquisitions + tri-exponential function).
- We computed the percentage of dose difference (PDD):

$$PDD = \frac{(D_{Method} - D_{Reference}) \times 100}{D_{Reference}}$$

- For the M3 method, we use the leave-one-out method independently to each cohort.
- We use only cycles with three SPECT/CT acquisitions.

Validation results

M1 method vs Reference method (acquisition at 24H)

	Left kidney	Right kidney	Liver	Spleen	L2 - L4	L1 - L5	T9 - L5
Mean ± Std	2.0 ± 14.0 %	1.5 ± 11.8 %	2.7 ± 9.9 %	9.0 ± 18.9 %	0.4 ± 4.8 %	-0.1 ± 5.6 %	0.2 ± 3.8 %

M2 method vs Reference method (acquisition at 24H)

	Left kidney	Right kidney	Liver	Spleen	L2 - L4	L1 - L5	T9 - L5
Mean ± Std	0.7 ± 17.3 %	19.4 ± 32.3 %	2.1 ± 25.2 %	4.9 ± 20.7 %	9.4 ± 23.6 %	9.3 ± 21.1 %	4.1 ± 21.9 %

Validation results

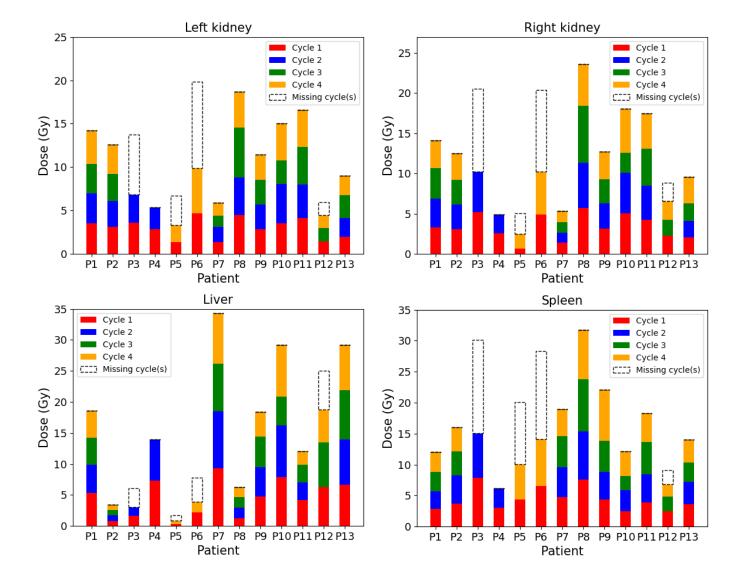
M3 method vs Reference method (acquisition at 1H)

	Left kidney	Right kidney	Liver	Spleen	L2 - L4	L1 - L5	T9 - L5
Mean ± Std	4.5 ± 21.6 %	7.7 ± 29.0 %	8.8 ± 33.0 %	9.0 ± 36.9 %	7.3 ± 27.4 %	4.3 ± 21.1 %	2.9 ± 19.9 %

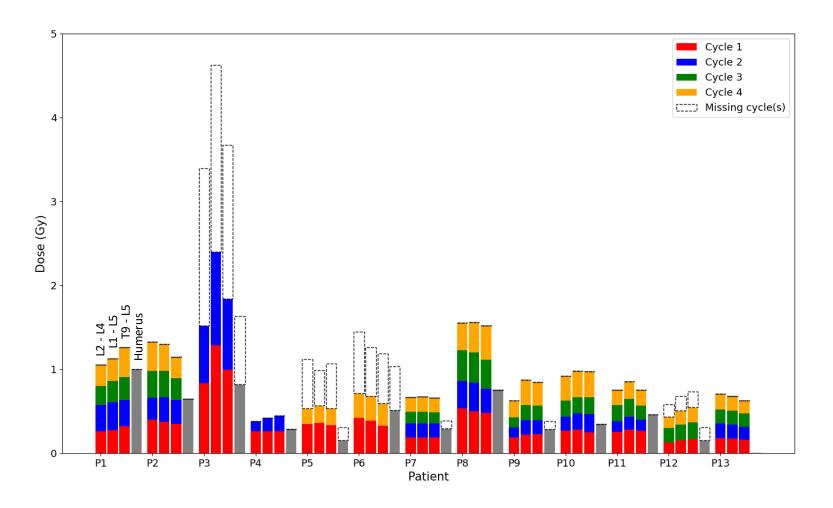
M3 method vs Reference method (acquisition at 24H)

	Left kidney	Right kidney	Liver	Spleen	L2 - L4	L1 - L5	T9 - L5
Mean ± Std	1.3 ± 14.9 %	2.0 ± 15.8 %	3.9 ± 25.9 %	3.2 ± 20.9 %	-9.9 ± 23.3 %	-7.5 ± 19.8 %	-7.0 ± 20.0 %

M3 method vs Reference method (acquisition at 7D)


	Left kidney	Right kidney	Liver	Spleen	L2 - L4	L1 - L5	T9 - L5
Mean ± Std	5.3 ± 19.7 %	1.5 ± 11.3 %	6.8 ± 30.4 %	6.0 ± 29.6 %	0.2 ± 4.2 %	0.1 ± 4.1 %	0.1 ± 4.0 %

Dosimetric results (1)



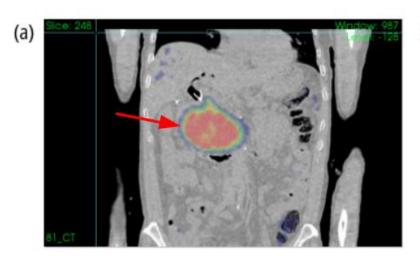
Dosimetric results (2)

Conclusion

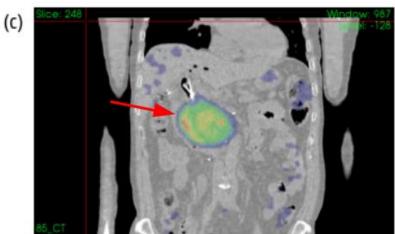
- A clinically applicable dosimetric workflow that adapts to the number of available SPECT/CT acquisitions has been implemented for organs at risk.
- This workflow allows to take into account the patient's physiology (one uptake phase and two elimination phases) as well as the cross-dose contribution (tumors).
- Several dosimetric methods have been evaluated.
- The dosimetric uncertainties depend on the number of SPECT/CT acquisitions and therefore on the dosimetric method used.
- This workflow may be applied in ¹⁷⁷Lu-PSMA therapy
- To be published in EJNMMI Physics (revised)

Acknowledgements

Thank you to Dr. Anne-Laure Giraudet, PhD (CLB), Dr. Aurélie Moreau (CLB) and Dr. Alessio Imperiale, PhD (ICANS), to the medical physicist Julien Salvadori, PhD (ICANS) and to the whole TOMORADIO team (CREATIS)!



Appendix



Cross-dose contribution (1)

Cross-dose contribution (2)

	With lesion	Without lesion	Self-dose contribution	Cross-dose contribution
Left kidney	1390 mGy	1362 mGy	98 %	2 %
Right kidney	663 mGy	330 mGy	50 %	50 %
Liver	288 mGy	152 mGy	53 %	47 %
Spleen	4471 mGy	4283 mGy	96 %	4 %
L2-L4	352 mGy	15 mGy	4 %	96 %
L1-L5	361 mGy	18 mGy	5 %	95 %
T9-L5	337 mGy	24 mGy	7 %	93 %

