

MEDIRAD clinical dosimetry study: Results and Conclusions

Alex Vergara Gil, Manuel Bardiès
The MEDIRAD Consortium

SÉMINAIRE DE RADIOTHÉRAPIE INTERNE VECTORISÉE Montpellier, 14 AU 16 MARS 2022

European Project MEDIRAD (H2020)

Objectives

- Developing new tools and methods for research in radiation protection.
- Understand better the risks related to radiological exposure.
- Make new recommendations in the field of radiation protection.

MEDIRAD project

Composed of 5 work packages

MEDIRAD Work Package 3

- 4 European clinical departments: Toulouse (IUCT-O), Sutton (RMH), Wurzburg (UKW) and Marburg (UKM)
- Collected data from 100 patients with thyroid cancer treated with I-131 post-thyroidectomy
- Dosimetry performed

www.medirad-project.eu

Clinical Dosimetry Workflow (CDW)

Data workflows in the Medirad project:

- Conventional: **Time Integrated Activity** (TIA) workflow
- Alternate: **Absorbed Dose** Rate (ADR) workflow

Data management defined

Modular design (each step has data input and data output that is preserved

Dosimetric database (SAFs, S-values) for Nuclear Medicine:

- collaborative data production (18+ teams)
- open and FAIR data
- data associated with (statistical)
 uncertainties

Dosimetric Solutions:

- OpenDose Calculator (Model Based)
- OpenDose3D (Patient Specific)

http://www.opendose.org

OpenDose3D development

OpenSource + Git Based on 3D Slicer:

- DICOM RT (I/O)
- Display
- Segmentation
- Registration

+ Specific developments:

- Data workflow
- TAC fitting
- Absorbed dose (rate) calculation:
 - a. Local Energy Deposition (LED)
 - b. Convolution (VDK)
 - c Monte Carlo

Validation performed:

- SIRT (90Y) Univ Messina
- MEDIRAD (131)
- IAEA CRP: (177Lu)*

Clinical dosimetry implemented in MEDIRAD

- 4 centres (IUCT-O, RMH, UKW, UKM)
- 4 different protocols (5!)
- OpenDose3D was adapted to cover clinical situations in ¾ institutions

Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT-O):

25/29 patients - One unique SPECT/CT at 96h, 2 FOV (Head-Abdomen) External probe WB measurements

Royal Marsden Hospital (RMH):

25/25 patients - 2 acquisition protocols:

- Single SPECT/CT at 48h, 1 FOV (Head-Torso)
- + additional SPECT acquisitions aligned with CT at 48h for attenuation correction.

External probe WB measurements.

Würzburg University Clinic (UKW)

21/21 patients - SPECT/CT at 48h + additional uncorrected SPECT acquisitions. 2 FOV (Head-Abdomen)

Mass of segmented structures (kg)

25 patients

Large FOV, One time-point

Teff from RMH (except WB from external probe)

AD1: patient-specific Monte Carlo-based calculation

25 patients

AD2: Model-based (IDAC 2.1) calculation

25 patients

Mass of segmented structures (kg)

1 FOV, several time-points

25 patients

Residence time (h)

AD1: patient-specific Monte Carlo-based calculation 2

25 patients

AD2: Model-based (IDAC 2.1) calculation

21 patients

Mass of segmented structures (kg)

2 FOV, several time-points

21 patients

Residence time (h)

AD1: patient-specific Monte Carlo-based calculation

21 patients

AD2: Model-based (IDAC 2.1) calculation

Comparison with blood based dosimetry

Comparison with RMH dosimetry

Conclusions

- The dosimetry of three centres was performed using OpenDose3D.
- The software had to be specifically adapted to each protocol, yet results obtained were quite comparable.
- During the validation phase, most observed differences between dosimetry codes applied to the same patients for comparison could be explained.
- Dosimetry shows large inter patient variability.
- The quality and reliability of dosimetric results largely depends on the quality of the clinical protocol implemented.

Thanks for your Attention !!!