

Recherche inclusive de nouvelle physique dans le secteur du quark top CMS-LHC

19/02/2010

Introduction

I. Introduction

- LHC & CMS
- Physique du quark top & nouvelle physique
- Canal lepton+jets

II. Estimation des bruits de fond physique

- Estimation des processus QCD multi-jets
- Estimation des processus W+jets
- Estimation des processus tt+jets

III. Distributions différentielles

- Ex: Mttbar, HT, MET
- Goodness-of-fit test

IV. Recherche de SUSY dans le canal leptonique

V. Conclusion & plan

Démarrage du LHC !

Projet au long terme ...

80's: Premières idées d'un projet pp 1994: projet approuvé au CERN 2000: fin du LEP

... construction ...

démarrage

10/09/2008: injection de protons dans l'anneau
19/09/2008: Magnetic quench (100 aimants)
21/10/2008: inauguration officielle
05/12/2008: analyse détaillée de l'incident
... réparations et tests ...

re-démarrage

20/11/2009 injection de protons danss l'anneau
23/11/2009: 1^{eres} collisions à 900 GeV
30/11/2009: record mondial: 1.18 TeV/faisceau
01/12/2009: 1^{ere} publication: ALICE
12/2009: collisions à 2260 GeV

~ mars 2010: montée en énergie jusqu'à 3.5 TeV

Nominalement: $\sqrt{s} = 14 \text{ TeV}$ $L = 10^{34} \text{ cm}^2 \text{s}^{-1}$ $\int \text{Ldt} = 100 \text{ fb}^{-1}/\text{ an}$

En 2010-2011:				
$\sqrt{s} = 7 \text{ TeV}$				
$L = 3 \ 10^{11} \ cm^2 s^{-1}$				
$\int Ldt = 1000 \text{ pb}^{-1}$				

Courant 2011: shut down - rework pour fonctionner à ... >5-7 TeV/faisceau

Résultats de physique à venir courant 2010 ...

19/02/2010

Détecteur CMS

19/02/2010

à 900 & 2360 GeV

Données cosmiques: (été 2008-2009)

23 papiers publiés

intégration

performances (détecteur & reconstruction) & physique (muon charge ratio)

cosmiques

Collisions pp: (nov-dec 2009)

1er papier de collisions pp JHEP02(2010)041: "Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 0.9 and 2.36 TeV "

Performance & stabilité du détecteur:

Efficacité de prise de donnée: ~60% (08) \rightarrow 85% (pp) Ex: TEC-: 99.7%(integration) \rightarrow 98.2% (08) \rightarrow 99.0% (pp)

→ précédents séminaires de S. Beauceron ou J. Andrea

à 7 TeV ...

Collisions pp dans CMS

19/02/2010

Le quark top


```
Découverte: top/anti-top 1995 @ Tevatron (CDF/D0)
               \Rightarrow complète le secteur des quarks
               single top : 03/2009
Temps de vie: ~ 5 10<sup>-25</sup>s << \lambda^{-1}_{OCD}
               ⇒ désintégration avant hadronisation
Masse: 173.1 \pm 0.6 (stat.) \pm 1.1 (syst.) GeV/c<sup>2</sup>
          [Tevatron 03/09]
     ⇒Fort couplage au boson de Higgs (\lambda_t \approx 1)
     \Rightarrow Rôle important dans EWSB
     \Rightarrow Sensible à la nouvelle physique ...
```


19/02/2010

- 2. <u>Mesure de précision électrofaible</u>
 - 3. Recherche directe de nouvelle physique

Tester les topologies des quarks top ouvre une fenêtre vers la nouvelle physique

Production de quarks top

Canal lepton+jets

19/02/2010

Séléction des évènements

@ 10 TeV Jets: Muons: SisCone CaloJet calibrés L2L3 Global muon :trajectographe + chambres à μ \cdot au moins 4 jets • P₋>30 GeV • P₁> 30 GeV $\cdot |\eta| < 2.1$ (système de déclenchement) · |ŋ|<2.4 · Coupure de qualité (χ^2 , # hits, d0 ...) · Jet-ID · Isolation: ($\Delta R = 0.3$) • "B-tagging" utilisé ("track counting") · Rellso = (TrackIso+EcalIso+HcalIso)/ $P_{\tau}(\mu)$ signa multijets single top ttjets wjets zjets Trigger: Number of events for 100/pb with : "HLT Muon9" - at least a muon : 2.10984e+069574 269044639 819 SUSY mSUGRA-LM1 - muon ID selection : 2.00747e+068304 24723 4352 711 $\sigma = 16.06 \text{ pb}$ 18683- kinematic selection : 495399 5410 3568 466 $m_0 = 60, m_{1/2} = 250, A_0 = 0, \tan \beta = 10$ 18677- exactly one muon : 49452151932061466 - isolation selection : $-d_0/\sigma < 3$: 373567 4945 185652031461203 evts sélectionnés - RelIso < 0.1:4803 3899 155841742441 Région de signal (SR): - jet selection : 84 2048 849 10487 évènements sélectionnés 8567 -4 jets : 71686 1300-5 jets : 11 5091341516 $- \geq 6$ jets : 2239284 4 ~ #evts attendus pour fin 2010

19/02/2010

La problématique expérimentale

Recherche de nouvelle physique dans une topologie fixée (1 muon + 4 jets) où le processus dominant est la production de paires de quarks top

D'autres bruits de fond sont prédits par le Modèle Standard:

- W+jets (dominant), Z+jets,
- QCD multi-jets (gde incertitude)
- "single top" (section efficace plus faible)
- WW, ZZ (σ =74 & 10 pb @ 10 TeV, inclusif, négligeables)

Comparaison Monte Carlo vs Données:

- Erreurs systématiques intrinsèques liées à la théorie ou aux paramètres des générateurs (parfois difficilement estimables)
- Erreurs systématiques liées à la méconnaissance de la reconstruction des évènements

pour s'affranchir de ces contraintes

Comparaison Estimation vs Données:

- les principaux bruits de fond sont estimés à partir des données
- Ies autres sont pris du Monte Carlo (single top, di-bosons)

Recherche des déviations dans les distributions invariantes

La problématique expérimentale

Distribution MET pour ttbar – L = 100 pb⁻¹ @ 10 TeV Illustration

Monte Carlo:

- Erreurs systématiques: générateur (ex:ISR/FSR) alignement/calibration (ex: JES) etc ...
- Erreurs statistiques: négligeables ...

Estimation:

- Erreurs systématiques: biais des méthodes négligeables ...
- Erreurs statistiques: taille des régions de controle

Meilleur potentiel de découverte en comparant estimations & données

19/02/2010

Introduction

I. Introduction

- LHC & CMS
- Physique du quark top & nouvelle physique
- Canal lepton+jets

II. Estimation des bruits de fond physique

- Estimation des processus QCD multi-jets
- Estimation des processus W+jets
- Estimation des processus tt+jets

III. Distributions différentielles

- Ex: Mttbar, HT, MET
- Goodness-of-fit test

IV. Recherche de SUSY dans le canal leptonique

V. Conclusion & plan

19/02/2010

FS

Origine:

- Origine des jets:
 - "Hard process"
 - Radiations
 - Evènements sous-jacent || Empilement
- Origine des muons:
 - Désintégration leptonique de b/c-hadrons: 70%
 - "fake & decay-in-flight": 30 % (rejetés par des critères de qualité)
- Conséquences:
 - Contenus dans les jets: non isolés
 - Vertex déplacés

Section efficace inclusive : avec 1 muon P_t>15 GeV/c: 121675 pb (@10 TeV) – 300 x σ_{mbar} !

Actuelle prédiction: ~3% des evts sélectionnés Bruit de fond difficilement simulable (calculé avec Pythia)

Doit être estimé à partir des données

Méthode "ABCD"

- Considère deux variables non corrélées:
 - Rellso = (TrackIso+EcalIso+HcalIso)/ $P_{T}(\mu)$
 - D0Sign = $d0/\sigma(d0)$
 - d0 = paramètre d'impact transverse
- 4 régions:
 - A : région de signal (ttbar+W+jets ...)
 - ➡ B–C– D: QCD est dominant
- Zones tampon pour limiter la contamination
- Contribution de QCD dans A est :

N(A) = N(C)/N(D)*N(B)

 Vérifier à partir des données la corrélation entre les variables

Erreurs statistiques vs luminosité

19/02/2010

"Template" à partir d'un échantillon enrichi en QCD:

- Critère d'isolation sur les muons inversé
- Autres critères de sélection identiques

Faibles erreurs statistiques dans la région de contrôle <u>Limité par la stat MC:</u> biais possible entre l'observable considérée & Rellso

Estimation de W+jets

Origine:

- Origine des muons:
 - Désintégration leptonique du W comme pour ttbar
- Origine des jets:
 - Radiations (principalement)
 - Evènements sous-jacent || Empilement
- Conséquences:
 - La partie leptonique est un bruit de fond irréductible
 - Seuls des critères sur les jets sont envisageables
 - Le contenu en quark b est presque négligeable

Section efficace (W \rightarrow µv) : = 13900 pb (NLO @ 10 TeV) - 100 x σ_{tthar} !

La description des radiations doit être faite par un générateur ME Actuelle prédiction: >1/4 des evts sélectionnés Bruit de fond dominant

Doit être estimé à partir des données

Principe

- Catégorisation des evts sélectionnés (SR) en fonction de #jets & <u>#b-jets</u>
- Une équation par #jets [4,5,>=6] & #b-jets [0,1,2,3]

Ex: Equation pour 4 jets pour décrire les evts à 1 jet b-taggé

$$\begin{array}{ll} \text{donn\acute{e}s} & \text{Fonction } f(\boldsymbol{\varepsilon}_{b}, \boldsymbol{\varepsilon}_{udsc}, \mathsf{N}_{ttbar}, \mathsf{N}_{w}) \text{ b quark b-tagged} & \text{light quark b-tagged} \\ N^{1 \ bjet} & = & \left(C_{2}^{1} \times \widehat{\epsilon_{b}}(1 - \epsilon_{b}) \times (1 - \epsilon_{udsc})^{2} + C_{2}^{1} \times (1 - \epsilon_{b})^{2} \times \widehat{\epsilon_{udsc}}(1 - \epsilon_{udsc}) \right) \times N^{ttbar-like} \\ & + C_{4}^{1} \epsilon_{udsc}(1 - \epsilon_{udsc})^{3} \times N^{W-like} \end{array}$$

light quark b-tagged

- Principale hypothèse = les processus se déclinent en 2 catégories:
 - "W-like": processus à 0 b-quarks (Z+jets ...) [quarks légers]
 - "Ttbar-like" : processus à 2 b-quarks

3 systèmes de 4 équations non-linéaires à 4 inconnues

0 b-jet

6					
4 jets	N4(0)	N4(1)	N4(2)	N4(3)	
	N5(0)	N5(1)	N5(2)	N5(3)	\leq
	N6(0)	N6(1)	N6(0)	N6(3)	
~ -					

ſ	g(eb4,el4,Nw4,Ntt4)	h(eb4,el4,Nw4,Ntt4)	i(eb4,el4,Nw4,Ntt4)
ļ	g(eb5,el5,Nw5,Ntt5)	h(eb5,el5,Nw5,Ntt5)	i(eb5,el5,Nw5,Ntt5)
	g(eb6,el6,Nw6,Ntt6)	h(eb6,el6,Nw6,Ntt6)	i(eb6,el6,Nw6,Ntt6)

Résolution du système d'équations

- 4 équations par #jets bin (=i) avec 4 inconnues
- N_i^{obs} (btagged jets j=0,1,2,3) = " f_{ij} "($\epsilon_b, \epsilon_{udsc}, N_{ttbar}, N_w$)
- $E_{b} \& \epsilon_{udsc}$ sont estimés et ne proviennent pas du MC
- Non-linear equations, ne peut être résolu analytiquement
- Résolution par minimisation d'un χ^2 à 4 dimensions
- Pour chaque i=4,5,6
 le résultat est: #(W-like) estimé

- Les erreurs statistiques Pour L = 100 pb⁻¹ $\sigma(N_w)/N(w) = 6\%$
- Les erreurs systématiques
 Pour L = 100 pb⁻¹ σ(N_w)/N(_w) = 3%
- Le bruit de fond QCD est soustrait des résultats "W-like events"

Après soustraction des évènements QCD multi-jets ...

Principe:

- 2 "templates" à partir des **données** sélectionnées:
 - $Tw^{init} = N^{j=0}$ N(b-jet = 0) (W-like enriched)
 - Ttop^{ini t}= N ^{j=1}: N(b-jet = 1) (tt-like enriched)
- Objectif: obtenir 2 "templates":
 - Estimation pour W-like: <u>Tw</u>
 - Estimation pour tt-like: Ttop
- Hypothèse: observable non corrélée avec le b-tagging

Equations: $N^{j=0} = x_0^{TW} + y_0^{Ttop}$ $N^{j=1} = x_1^{TW} + y_1^{Ttop}$

Procédure itérative

- Normaliser TW^{\frown} & le soustraire de N ^{j=1} bin par bin \Rightarrow TTop'
- Normaliser Ttop & le soustraire de N $^{j=0}$ bin par bin \Rightarrow TW

Les facteurs (x₀,x₁,y₀,y₁) proviennent de la méthode d'estimation W+jets précedente

- N ^{j=0} & N ^{j=1} proviennent des données
- Convergence après < 10 iterations</p>

19/02/2010

Principe

- Définir une région de contrôle (CR)
 - enrichie en ttbar
 - → "non biasée": → invariance de forme CR/SR
 - peu contaminée par la nouvelle physique
- Créer un "template" par observable X
- Normaliser le "template" aux données

Région de contrôle

- Au moins 2 "loose" b-jets
- Coupures sur des observables orientées ttbar (b,b,l)
 - M(b,l)< 160 GeV reflète la désintégration leptonique du top</p>
 - $\Delta R(b,b)>2.3$ reflète top/anti-top ~ dos à dos
 - $H_T(b,b)$ <500 GeV recherche d'objets à haut P_T
- Distributions identiques pour ttbar leptonique/di-leptonique

Template normalisé à partir de la partie inférieure de la distribution obtenue avec les données

ex: X=MET, région de normalisation = [0-100 Gev]

Région de normalisation

Distributions de MET normalisées Erreurs stat: MC

BRUXELLES

Introduction

I. Introduction

- LHC & CMS
- Physique du quark top & nouvelle physique
- Canal lepton+jets

II. Estimation des bruits de fond physique

- Estimation des processus QCD multi-jets
- Estimation des processus W+jets
- Estimation des processus tt+jets

III. Distributions différentielles

- Ex: Mttbar, HT, MET
- Goodness-of-fit test

IV. Recherche de SUSY dans le canal leptonique

V. Conclusion & plan

Distributions différentielles

19/02/2010

Distributions différentielles

Estimation for MET

Goodness-of-fit test

 $=\frac{(x_{k,j} - y_{k,j}^{est})^{2}}{V_{ar}[X] + V_{ar}[V]}$

 $V = \sum S_i$

SM+NP

10% high est

Construction d'un estimateur

- Considérons N observables:
 - Relatives aux topologies du quark top
 - Sensible à la présence de nouvelle physique
- Pour chaque observable, réaliser une estimation des bruits de fond
- Pour chaque observable & chaque evt calculer une significance
- Les significances par observable combinées donne un poid par evt S
- Ordonner les evts en fonction de leur poids
- Combiner les poids pour une fraction des evts (- SM-like) donne un estimateur: V

Calcul de P-value

 $_{P} = \left(\int V_{distr}\right) / \int V_{distr}$

- Obtenir une V-distribution avec des pseudo-expériences MC pour différentes hypothèses
 - ✤ SM
 - SM + New Physics (ex: SM+SUSY(LM1), ...)
- Sur les données: V value convertie en probabilité conditionnelle

V(data) Estimation de notre sensitivité expérimentale pour un modèle de nouvelle physique donné Scanning des paramètres → contours d'exclusion

Goodness-of-fit test

2 variables: MET, Pt(muon)

V-distribution obtenue sur des pseudo-exp MC (2000)

- ajustée: pdf
- utilisée pour calculer des p-values

En cas d'hypothèse nulle (MS), p-value distribution est plate. En cas de présence de nouvelle physique, p-distribution se rapproche de 0.

3 variables: MET, Pt(muon) + H_{T}

L'addition de variables discriminantes peu corrélées améliore l'observabilité de nouvelle physique

Introduction

I. Introduction

- LHC & CMS
- Physique du quark top & nouvelle physique
- Canal lepton+jets

II. Estimation des bruits de fond physique

- Estimation des processus QCD multi-jets
- Estimation des processus W+jets
- Estimation des processus tt+jets

III. Distributions différentielles

- Ex: Mttbar, HT, MET
- Goodness-of-fit test

IV. Recherche de SUSY dans le canal leptonique

V. Conclusion & plan

Supersymétrie: "SUSY"

H

Higgsino

SUSY = symétrie entre fermions & bosons

Résout plusieurs problèmes:

- candidat pour la matière noire (= plus légère part susy)
- unification des constantes de couplages
- problème de hierarchie

Curra átria lavia á a	"Hidden sector": →	Visible sector:					
Symetrie brisee:	SUSY breaking	MSSM					
	"Gravity-mediate	ed": SUGRA					
	"Gauge-mediated": GMSB						
	"Anomaly-media	ted": AMSB					
19/02/2010	Eric.Chabe	rt@cern.ch, IIHE					

Supersymétrie: "SUSY"

"blind SUSY search":

- scanning des paramètres SUSY sans optimisation ...
- pas de processus particulier recherché
- analyse par signature

J J	0 leptons	I lepton	2 leptons	25 leptons
5 paramètres dans mSugra	RA1: excl. jets RA2: incl. jets	RA4	RA5: same sign	RA7
m0,m1/2,A0, tan β , sign(μ) \rightarrow "LMX" point	RA3: γ+X (incl. 2γ GMSB)		RA6: opposite sign	

ex: LM10: 0.06 pb , LM10: 110 pb, autres [1,20] pb

Model	Cross	Section	m_0	$m_{1/2}$	A_0	$\tan\beta$				
		(pb)	(GeV)	(GeV)						
LM0		110	200	160	-400	10				
LM1		16.06	60	250	0	10				
Model	$m(ilde{g})$	$m(ilde{\chi}_1^0)$	$m(ilde{\chi}_2^0)$	$m(\tilde{\chi}_1^+)$) m($\tilde{\chi}_2^+$) $m(\tilde{t}_1$) $m(\tilde{b}_1)$	$m(ilde{u}_L)$	$m(ilde{e}_L)$	$m(\tilde{\nu}_{eL})$
LM0	409	60	113	114	32	27 207	356	415	231	217
LM1	603	96	178	179	30	60 407	510	552	186	167

Pour I+jets:

- estimation des bruits de fond (ttbar) à partir des données
- coupure additionnelle sur MET (>100 GeV) & "expérience de comptage"

19/02/2010

Estimation de tt

Cuts	SUSY (LM1)	TT+jets	W+jets	QCD	S/(S+B)
All	1606 ± 4	9552 ± 20	27045 ± 112	2109921 ± 2016	1.10 ± 0.01
Muon isolated $P_t > 10 \text{ GeV}$	228 ± 1	4408 ± 14	17173 ± 90	17470 ± 183	1.15 ± 0.03
4 jets (50-50-30 GeV)	119 ± 1	1134 ± 7	349 ± 13	50 ± 10	2.9 ± 0.6
MET > 100 GeV	101 ± 1	178 ± 3	17 ± 3	0 ± 1	6 ± 1

Région de controle

Cuts	SUSY (LM1)	TT+jets	W+jets	QCD	S/(S+B)	% SUSY [MET>100GeV]
All	1606 ± 4	9552 ± 20	27050 ± 110	2110000 ± 2000	6.52 ± 0.03	-
Muon isolated $P_t > 30 \text{ GeV}$	147 ± 1	3356 ± 12	11800 ± 70	900 ± 40	26.4 ± 0.2	-
4 jets $P_t > 30 \text{ GeV}$	84 ± 1	1282 ± 7	497 ± 15	12 ± 5	29.6 ± 0.3	29%
2 loose b-jets	53 ± 1	796 ± 6	50 ± 5	2 ± 2	26.6 ± 0.4	29%
Mass(b, l) < 150 GeV	32 ± 1	723 ± 6	36 ± 4	2 ± 2	25.6 ± 0.5	22%
$\Delta R_{b,b} > 2.0$	17 ± 1	497 ± 5	22 ± 3	0 ± 0	21.4 ± 0.5	18%
$H_T(b,b) < 250 \text{ GeV}$	9 ± 1	419 ± 4	17 ± 3	0 ± 0	19.8 ± 0.6	11%
MET>100 GeV	8 ± 1	66 ± 2	0 ± 1	0 ± 1	7.7 ± 0.3	11%
CR Tail	of CR					
19/02/2010	Eric.Cha	bert@cer <u>n.c</u>	h, IIHE		35	

Control Region: M(bl)

3 conditions à prendre en compte dans le choix de la CR:

- Efficacité sur ttbar: erreurs statistiques
- Eff ttbar vs Rej SUSY: optiminiser l'observabilité
- Les distorsions des distributions introduites par les coupures

Samples: TTJets + SUSY

Les scenarii type "LM0-LM1" sont observables avec L=100 pb⁻¹

19/02/2010

Importance de la physique du quark top au LHC, notamment dans la recherche de nouvelle physique

- Chaîne d'estimation des bruits de fond dans le canal l+jets
- Analyse de distributions différentielles
- Test du Modèle Standard: "Goodness-of-fit" test
- Application à la recherche SUSY

Avec >200 pb⁻¹ @ 7 TeV (fin 2010): résultats sur des données dans un an !