

19/02/2010

Recherche inclusive de nouvelle physique dans le secteur du quark top CMS-LHC

Introduction

I. Introduction

- LHC & CMS
- Physique du quark top & nouvelle physique
- Canal lepton+jets

II. Estimation des bruits de fond physique

- Estimation des processus QCD multi-jets
- Estimation des processus W+jets
- Estimation des processus tt+jets

III. Distributions différentielles

- Ex: Mttbar, HT, MET
- Goodness-of-fit test

IV. Recherche de SUSY dans le canal leptonique

V. Conclusion & plan

Démarrage du LHC!

Projet au long terme ...

80's: Premières idées d'un projet pp

1994: projet approuvé au CERN

2000: fin du LEP

... construction ...

démarrage

10/09/2008: injection de protons dans l'anneau

19/09/2008: Magnetic quench (100 aimants)

21/10/2008: inauguration officielle

05/12/2008: analyse détaillée de l'incident

... réparations et tests ...

re-démarrage

20/11/2009 injection de protons danss l'anneau

23/11/2009: 1 eres collisions à 900 GeV

30/11/2009: record mondial: 1.18 TeV/faisceau

01/12/2009: 1^{ere} publication: ALICE 12/2009: collisions à 2260 GeV

~ mars 2010: montée en énergie jusqu'à 3.5 TeV

Courant 2011: shut down - rework pour fonctionner à ... >5-7 TeV/faisceau

Nominalement:

$$\sqrt{s} = 14 \text{ TeV}$$

$$L = 10^{34} \text{ cm}^2 \text{s}^{-1}$$

$$\int$$
 Ldt = 100 fb⁻¹/ an

En 2010-2011:

$$\sqrt{s} = 7 \text{ TeV}$$

$$L = 3 \ 10^{11} \ cm^2 s^{-1}$$

$$\int Ldt = 1000 \text{ pb}^{-1}$$

Détecteur CMS

CMS: collaboration en évolution

Chronologie d'une collaboration ...

Construction & Prise de données intégration Prise de données cosmiques 1ères collisions pp à 7 TeV ...

Données cosmiques: (été 2008-2009)

23 papiers publiés performances (détecteur & reconstruction) & physique (muon charge ratio)

Collisions pp: (nov-dec 2009)

1er papier de collisions pp JHEP02(2010)041:

"Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 0.9 and 2.36 TeV"

Performance & stabilité du détecteur:

Efficacité de prise de donnée: ~60% (08) → 85% (pp)

Ex: TEC-: 99.7%(integration) \rightarrow 98.2% (08) \rightarrow 99.0% (pp)

→ précédents séminaires de S. Beauceron ou J. Andrea

Collisions pp dans CMS

Le quark top

Découverte: top/anti-top 1995 @ Tevatron (CDF/D0)

⇒ complète le secteur des quarks

single top: 03/2009

Temps de vie: $\sim 5~10^{-25} s << \lambda^{-1}_{QCD}$

⇒ désintégration avant hadronisation

Masse: 173.1 ± 0.6 (stat.) ± 1.1 (syst.) GeV/c² [Tevatron 03/09]

- \Rightarrow Fort couplage au boson de Higgs ($\lambda_t \approx 1$)
- ⇒Rôle important dans EWSB
- ⇒Sensible à la nouvelle physique ...

La physique du quark top

PRODUCTION

Section efficace Corrélation de spin

Résonances X—tt 4ème génération t' SUSY (stops ...) Production associée (ex: ttH) 4 tops

PROPRIETES

Masse Charge Temps de vie & largeur Spin

DESINTEGRATION

Hélicité du W Mesure de V_{th} (CKM)

Charged Higgs
Anomalous coupling
FCNC

Ajustement cinématique (m_w)

déclenchement

CALIBRATION

Echelle en énergie des jets Étiquetage des b-jets

- 1. Calibration du détecteur et des outils
 - 2. <u>Mesure de précision électrofaible</u>

3. Recherche directe de nouvelle physique

Tester les topologies des quarks top ouvre une fenêtre vers la nouvelle physique

Production de quarks top

Q**2= 30000 GeV**2

Modèle Standard

165 pb @ 7 TeV

Observés @Tevatron

paires de top[
$$\sigma$$
=908-414pb (@14-10TeV)] single top (3 channels) [σ =333-164 pb]

production associée (ttZ,ttW) [$\sigma \sim 1$ pb]

3 tops [$\sigma \sim 2$ fb]

4 tops [$\sigma \sim 3$ fb]

Nouvelle Physique

- Résonances ttbar (ex: H, Z' ...)
- "X→top+Y" (ex: stop, H^{±-})
- ttH etc ...
- 3 tops (σ ~28-41 fb) [Z',MSSM]

4 topş (exotica: σ > 100 fb)

• √s **/** & L **/** favorable à l'observation de nouvelle physique

Canal lepton+jets

Production de paires de quarks top

Canal lepton+jets:

- Multi-jets: >=4 jets
- Exactement un muon

Signature:

- 4 jets dont 2 provenant de quarks b
- 1 lepton isolé venant d'un W
- MET provenant du neutrino

Séléction des évènements

Jets:

SisCone CaloJet calibrés L2L3

- · au moins 4 jets
- $\cdot P_{\tau} > 30 \text{ GeV}$
- $|\eta| < 2.4$
- · Jet-ID
- · "B-tagging" utilisé ("track counting")

Muons:

@ 10 TeV

Global muon :trajectographe + chambres à μ

- P_→>30 GeV
- · |n|<2.1 (système de déclenchement)
- · Coupure de qualité (χ² ,# hits, d0 ...)
- · Isolation: ($\Delta R = 0.3$)
- · Rellso = (TrackIso+EcalIso+HcalIso)/ $P_{\tau}(\mu)$

SIUIIAI								
	multijets	ttjets	wjets	zjets	single top			
Number of events for 10								
- at least a muon :	2.10984e+06	9574	26904	4639	819	1		
- muon ID selection :	2.00747e + 06	8304	24723	4352	711			
- kinematic selection :	495399	5410	18683	3568	466			
- exactly one muon :	494521	5193	18677	2061	466			
- isolation selection :								
$-d_0/\sigma < 3$:	373567	4945	18565	2031	461			
-RelIso < 0.1:	4803	3899	15584	1742	441			
- jet selection :	84	2048	849	104	87			
- 4 jets :	71	1300	686	85	67			
- 5 jets :	11	509	134	15	16			
$- \ge 6 \text{ jets}$:	2	239	28	4	4 ~	. 7		

Trigger:

"HLT_Muon9"

SUSY mSUGRA-LM1

 $\sigma = 16.06 \text{ pb}$

 $m_0 = 60, m_{1/2} = 250, A_0 = 0, \tan \beta = 10$

203 evts sélectionnés

Région de signal (SR): évènements sélectionnés

~ #evts attendus pour fin 2010

La problématique expérimentale

Recherche de nouvelle physique dans une topologie fixée (1 muon + 4 jets) où le processus dominant est la production de paires de quarks top

D'autres bruits de fond sont prédits par le Modèle Standard:

- W+jets (dominant), Z+jets,
- QCD multi-jets (gde incertitude)
- "single top" (section efficace plus faible)
- WW, ZZ ($\sigma = 74 \& 10 \text{ pb } @ 10 \text{ TeV}$, inclusif, négligeables)

Comparaison Monte Carlo vs Données:

- → Erreurs systématiques intrinsèques liées à la théorie ou aux paramètres des générateurs (parfois difficilement estimables)
- → Erreurs systématiques liées à la méconnaissance de la reconstruction des évènements

pour s'affranchir de ces contraintes

Comparaison Estimation vs Données:

- → les principaux bruits de fond sont estimés à partir des données
- → les autres sont pris du Monte Carlo (single top, di-bosons)

Recherche des déviations dans les distributions invariantes

La problématique expérimentale

Distribution MET pour ttbar – L = 100 pb⁻¹ @ 10 TeV

Illustration

Monte Carlo:

- Erreurs systématiques: générateur (ex:ISR/FSR) alignement/calibration (ex: JES) etc ...
- Erreurs statistiques: négligeables ...

Estimation:

- Erreurs systématiques: biais des méthodes négligeables ..
- Erreurs statistiques: taille des régions de controle

Meilleur potentiel de découverte en comparant estimations & données

Stratégie de recherche

→ t' ?

M(bqq)

Identification de modèle

Introduction

I. Introduction

- LHC & CMS
- Physique du quark top & nouvelle physique
- Canal lepton+jets

II. Estimation des bruits de fond physique

- Estimation des processus QCD multi-jets
- Estimation des processus W+jets
- Estimation des processus tt+jets

III. Distributions différentielles

- Ex: Mttbar, HT, MET
- Goodness-of-fit test

- IV. Recherche de SUSY dans le canal leptonique
- V. Conclusion & plan

Estimation des processus MS

Estimation de QCD multi-jets

Origine:

- Origine des jets:
 - "Hard process"
 - Radiations
 - Evènements sous-jacent || Empilement
- Origine des muons:
 - → Désintégration leptonique de b/c-hadrons: 70%
 - → "fake & decay-in-flight": 30 % (rejetés par des critères de qualité)
- Conséquences:
 - → Contenus dans les jets: non isolés
 - → Vertex déplacés

Section efficace inclusive : avec 1 muon P_t>15 GeV/c: 121675 pb (@10 TeV) – 300 x σ_{thar} !

Actuelle prédiction: ~3% des evts sélectionnés Bruit de fond difficilement simulable (calculé avec Pythia)

Doit être estimé à partir des données

Estimation de QCD: normalisation

Méthode "ABCD"

- Considère deux variables non corrélées:
 - → Rellso = (TrackIso+EcalIso+HcalIso)/ $P_{\tau}(\mu)$
 - D0Sign = d0/σ(d0)
 d0 = paramètre d'impact transverse
- 4 régions:
 - → A : région de signal (ttbar+W+jets ...)
 - → B–C– D: QCD est dominant
- Zones tampon pour limiter la contamination
- Contribution de QCD dans A est :

$$N(A) = N(C)/N(D)*N(B)$$

Après sélection
Pour 100 pb⁻¹

Prediction 134±11
Estimation:
QCD 95±24
Inclusif 146±30

 Vérifier à partir des données la corrélation entre les variables

Erreurs statistiques vs luminosité

Estimation de QCD: distributions

"Template" à partir d'un échantillon enrichi en QCD:

- Critère d'isolation sur les muons inversé
- Autres critères de sélection identiques

Faibles erreurs statistiques dans la région de contrôle <u>Limité par la stat MC:</u> biais possible entre l'observable considérée & Rellso

Estimation de W+jets

Origine:

- Origine des muons:
 - Désintégration leptonique du W comme pour ttbar
- Origine des jets:
 - Radiations (principalement)
 - → Evènements sous-jacent || Empilement
- Conséquences:
 - → La partie leptonique est un bruit de fond irréductible
 - Seuls des critères sur les jets sont envisageables
 - → Le contenu en quark b est presque négligeable

Section efficace (W \rightarrow µv) : = 13900 pb (NLO @ 10 TeV) - 100 x σ_{ttbar} !

La description des radiations doit être faite par un générateur ME Actuelle prédiction: >1/4 des evts sélectionnés

Bruit de fond dominant

Doit être estimé à partir des données

Estimation de W+jets: normalisation

Principe

- Catégorisation des evts sélectionnés (SR) en fonction de #jets & #b-jets
- Une équation par #jets [4,5,>=6] & #b-jets [0,1,2,3]

Ex: Equation pour 4 jets pour décrire les evts à 1 jet b-taggé

données

Fonction $f(\varepsilon_b, \varepsilon_{udsc}, N_{ttbar}, N_w)$ b quark b-tagged

light quark b-tagged

$$N^{1 \ bjet} = \left(C_2^1 \times \overline{\epsilon_b(1 - \epsilon_b)} \times (1 - \epsilon_{udsc})^2 + C_2^1 \times (1 - \epsilon_b)^2 \times \overline{\epsilon_{udsc}(1 - \epsilon_{udsc})} \right) \times N^{ttbar-like} + C_4^1 \epsilon_{udsc} (1 - \epsilon_{udsc})^3 \times N^{W-like}$$

light quark b-tagged

- Principale hypothèse = les processus se déclinent en 2 catégories:
 - → "W-like": processus à 0 b-quarks (Z+jets ...) [quarks légers]
 - → "Ttbar-like": processus à 2 b-quarks

3 systèmes de 4 équations non-linéaires à 4 inconnues

0 b-jet

_	_				$\overline{}$
4 jets	N4(0)	N4(1)	N4(2)	N4(3)	
	N5(0)	N5(1)	N5(2)	N5(3)	
	N6(0)	N6(1)	N6(0)	N6(3)	
<u> </u>					-

	g(eb4,el4,Nw4,Ntt4)	h(eb4,el4,Nw4,Ntt4)	i(eb4,el4,Nw4,Ntt4)
\prec	g(eb5,el5,Nw5,Ntt5)	h(eb5,el5,Nw5,Ntt5)	i(eb5,el5,Nw5,Ntt5)
	g(eb6,el6,Nw6,Ntt6)	h(eb6,el6,Nw6,Ntt6)	i(eb6,el6,Nw6,Ntt6)

Estimation de W+jets: normalisation

Résolution du système d'équations

- 4 équations par #jets bin (=i) avec 4 inconnues
- N_i^{obs} (btagged jets j=0,1,2,3) = " f_{ij} "(ϵ_b , ϵ_{udsc} , N_{ttbar} , N_w)
- $E_b \& \epsilon_{udsc}$ sont estimés et ne proviennent pas du MC
- Non-linear equations, ne peut être résolu analytiquement
- Résolution par minimisation d'un χ^2 à 4 dimensions
- Pour chaque i=4,5,6
 le résultat est: #(W-like) estimé

- Les erreurs systématiques Pour L = 100 pb⁻¹ $\sigma(N_w)/N(_w) = 3\%$
- Le bruit de fond QCD est soustrait des résultats "W-like events"

Estimation de W+jets: distributions

Après soustraction des évènements QCD multi-jets ...

Principe:

- 2 "templates" à partir des **données** sélectionnées:
 - → $Tw^{init} = N^{j=0}$ N(b-jet = 0) (W-like enriched)
 - → Ttop^{ini t}= N $^{j=1}$: N(b-jet = 1) (tt-like enriched)
- Objectif: obtenir 2 "templates":
 - → Estimation pour W-like: <u>Tw</u>
 - Estimation pour tt-like: Ttop
- Hypothèse: observable non corrélée avec le b-tagging

Equations:

$$N^{j=0} = x_0^T + y_0^T$$

 $N^{j=1} = x_1^T + y_1^T$

Procédure itérative

- Normaliser TW & le soustraire de N j=1 bin par bin ⇒ TTop'
- Normaliser Ttop & le soustraire de N j=0 bin par bin ⇒ TW'
- Les facteurs ($x_0 x_1, y_0, y_1$) proviennent de la méthode d'estimation W+jets précedente
- N ^{j=0} & N ^{j=1} proviennent des données
- Convergence après < 10 iterations

Estimation de W+jets: distributions

Estimation de ttbar: distributions

Principe

- Définir une région de contrôle (CR)
 - enrichie en ttbar
 - * "non biasée": → invariance de forme CR/SR
 - peu contaminée par la nouvelle physique
- Créer un "template" par observable X
- Normaliser le "template" aux données

Région de contrôle

- Au moins 2 "loose" b-jets
- Coupures sur des observables orientées ttbar (b,b,l)
 - → M(b,l)< 160 GeV reflète la désintégration leptonique du top</p>
 - → ΔR(b,b)>2.3 reflète top/anti-top ~ dos à dos
 - → $H_T(b,b)$ <500 GeV recherche d'objets à haut P_T
- Distributions identiques pour ttbar leptonique/di-leptonique

Template normalisé à partir de la partie inférieure de la distribution obtenue avec les données

ex: X=MET, région de normalisation = [0-100 Gev]

Estimation of ttbar: shape estimation

Distributions de MET normalisées

Introduction

I. Introduction

- LHC & CMS
- Physique du quark top & nouvelle physique
- Canal lepton+jets

II. Estimation des bruits de fond physique

- Estimation des processus QCD multi-jets
- Estimation des processus W+jets
- Estimation des processus tt+jets

III. Distributions différentielles

- Ex: Mttbar, HT, MET
- Goodness-of-fit test

- IV. Recherche de SUSY dans le canal leptonique
- V. Conclusion & plan

Distributions différentielles

Distributions différentielles

Estimation for MET

Pour L = 100 pb⁻¹ @ 10 TeV

Goodness-of-fit test

Construction d'un estimateur

- Considérons N observables:
 - → Relatives aux topologies du quark top
 - → Sensible à la présence de nouvelle physique
- Pour chaque observable, réaliser une estimation des bruits de fond
- Pour chaque observable & chaque evt calculer une significance
- Les significances par observable combinées donne un poid par evt S
- Ordonner les evts en fonction de leur poids
- Combiner les poids pour une fraction des evts (- SM-like) donne un estimateur: V

Calcul de P-value

- $V = \sum_{i \in S_i} S_i$
- Obtenir une V-distribution avec des pseudo-expériences MC pour différentes hypothèses
 SM
 - → SM + New Physics (ex: SM+SUSY(LM1), ...)
- Sur les données: V value convertie en probabilité conditionnelle

$$\rho = \left(\int_{V_{astw}}^{+\infty} V_{distr}\right) / \int_{-\infty}^{+\infty} V_{distr}$$

Estimation de notre sensitivité expérimentale pour un modèle de nouvelle physique donné Scanning des paramètres → contours d'exclusion

Goodness-of-fit test

illustration

V-distribution obtenue sur des pseudo-exp MC (2000)

- ajustée: pdf
- utilisée pour calculer des p-values

En cas d'hypothèse nulle (MS), p-value distribution est plate. En cas de présence de nouvelle physique, p-distribution se rapproche de 0.

2 variables: MET, Pt(muon)

3 variables: MET, Pt(muon) + H_{τ}

L'addition de variables discriminantes peu corrélées améliore l'observabilité de nouvelle physique

Introduction

I. Introduction

- LHC & CMS
- Physique du quark top & nouvelle physique
- Canal lepton+jets

II. Estimation des bruits de fond physique

- Estimation des processus QCD multi-jets
- Estimation des processus W+jets
- Estimation des processus tt+jets

III. Distributions différentielles

- Ex: Mttbar, HT, MET
- Goodness-of-fit test

- IV. Recherche de SUSY dans le canal leptonique
- V. Conclusion & plan

Supersymétrie: "SUSY"

SUSY = symétrie entre fermions & bosons

Standard particles SUSY particles Н d b g Higgsino Higgs ž Ve W e τ μ Leptons Force particles Squarks Sleptons SUSY force

Résout plusieurs problèmes:

- candidat pour la matière noire (= plus légère part susy)
- unification des constantes de couplages
- problème de hierarchie

"Hidden sector":

Visible sector:

Symétrie brisée: SUSY breaking MSSM

"Gravity-mediated": SUGRA

"Gauge-mediated": GMSB

"Anomaly-mediated": AMSB

• • •

Supersymétrie: "SUSY"

"blind SUSY search":

- scanning des paramètres SUSY sans optimisation ...
- pas de processus particulier recherché
- analyse par signature

5 paramètres dans mSugra m0,m1/2,A0, tan β , sign(μ)

→ "LMX" point

0 leptons	1 lepton	2 leptons	≥3 leptons
RA1: excl. jets RA2: incl. jets	RA4	RA5: same sign	RA7
RA3: γ + X (incl. 2 γ GMSB)		RA6: opposite sign	

ex: LM10: 0.06 pb , LM10: 110 pb, autres [1,20] pb

Model	Cross Section	m_0	$m_{1/2}$	A_0	$\tan \beta$
	(pb)	(GeV)	(GeV)		
LM0	110	200	160	-400	10
LM1	16.06	60	250	0	10

Model	$m(ilde{g})$	$m(\tilde{\chi}_1^0)$	$m(\tilde{\chi}_2^0)$	$m(\tilde{\chi}_1^+)$	$m(\tilde{\chi}_2^+)$	$m(ilde{t}_1)$	$m(\tilde{b}_1)$	$m(ilde{u}_L)$	$m(ilde{e}_L)$	$m(\tilde{\nu}_{eL})$
LM0	409	60	113	114	327	207	356	415	231	217
LM1	603	96	178	179	360	407	510	552	186	167

Pour I+jets:

- estimation des bruits de fond (ttbar) à partir des données
- coupure additionnelle sur MET (>100 GeV) & "expérience de comptage"

Estimation de tt

Définition:

- >= 2 loose b-jets
- Mass(b,l) < 150 GeV (160)</p>
- \blacktriangle R(b,b) > 2.0 (2.3)
- \bullet H_T (b,b) < 250 GeV (500)

L = 100 pb⁻¹ @ 10 TeV

Sélection: SR

Cuts	SUSY (LM1)	TT+jets	W+jets	QCD	S/(S+B)
All	1606 ± 4	9552 ± 20	27045 ± 112	2109921 ± 2016	1.10 ± 0.01
Muon isolated $P_t > 10 \text{ GeV}$	228 ± 1	4408 ± 14	17173 ± 90	17470 ± 183	1.15 ± 0.03
4 jets (50-50-50-30 GeV)	119 ± 1	1134 ± 7	349 ± 13	50 ± 10	2.9 ± 0.6
MET>100GeV	101 ± 1	178 ± 3	17 ± 3	0 ± 1	6 ± 1

Région de controle

Cuts	SUSY (LM1)	TT+jets	W+jets	QCD	S/(S+B)	% SUSY [MET>100GeV]
All	1606 ± 4	9552 ± 20	27050 ± 110	2110000 ± 2000	6.52 ± 0.03	-
Muon isolated $P_t > 30 \text{ GeV}$	147 ± 1	3356 ± 12	11800 ± 70	900 ± 40	26.4 ± 0.2	-
$4 \text{ jets } P_t > 30 \text{ GeV}$	84 ± 1	1282 ± 7	497 ± 15	12 ± 5	29.6 ± 0.3	29%
2 loose b-jets	53 ± 1	796 ± 6	50 ± 5	2 ± 2	26.6 ± 0.4	29%
Mass(b, l) < 150 GeV	32 ± 1	723 ± 6	36 ± 4	2 ± 2	25.6 ± 0.5	22%
$\Delta R_{b,b} > 2.0$	17 ± 1	497 ± 5	22 ± 3	0 ± 0	21.4 ± 0.5	18%
$H_T(b, b) < 250 \text{ GeV}$	9 ± 1	419 ± 4	17 ± 3	0 ± 0	19.8 ± 0.6	11%
MET>100 GeV	8 ± 1	66 ± 2	0 ± 1	0 ± 1	7.7 ± 0.3	11%

CR

Tail of CR

Control Region: M(bl)

3 conditions à prendre en compte dans le choix de la CR:

- Efficacité sur ttbar: erreurs statistiques
- Eff ttbar vs Rej SUSY: optiminiser l'observabilité
- Les distorsions des distributions introduites par les coupures

Observabilité de SUSY-LM1

Samples: TTJets + SUSY

Les scenarii type "LM0-LM1" sont observables avec L=100 pb⁻¹

Conclusion

- Importance de la physique du quark top au LHC, notamment dans la recherche de nouvelle physique
- Chaîne d'estimation des bruits de fond dans le canal l+jets
- Analyse de distributions différentielles
- Test du Modèle Standard: "Goodness-of-fit" test
- Application à la recherche SUSY
- Avec >200 pb⁻¹ @ 7 TeV (fin 2010): résultats sur des données dans un an!