

Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules

Tape Challenge 2021 @ CC-IN2P3

CN

By Aresh Vedaee & Pierre Emmanuel Brinette (18.11.2021)

- Introduction to the tape challenge 2021
- Results and assessments
- CMS vs ATLAS staging performance during A-DT
- Conclusions

Introduction to the tape challenge 2021 (1/3)

• Tape Data Challenge orchestration:

- Google doc for a better coordination between VOs & sites: <u>https://docs.google.com/document/d/1rUhHdhlSgpU_Doam3Muox9XxnPQJEmqaf5_ZtzWsI5E/</u>
 - TC Objective: the validation of the **maximum tape bandwidth** needed for reads and writes to tier0 and tier1s tapes. This will imply a **realistic RUN 3 load** from DAQ systems, experiment T0 activity and exports. This test might include the validation of SRM-HTTP activity (TBC with Alessandra Forti).
 - Timeline of the tape challenge week (October 11~15, 2021) for each VO:
 - Data Taking (DT) and After Data Taking (A-DT): during DT, migration dominated over staging, during A-DT vice versa
 - RUN3 target throughput per each VO, site, activity (migration & staging) and period (DT & A-DT)
 - VO test programme:
 - For ATLAS and CMS: 2 days of DT and 3 days of A-DT
 - For LHCb and ALICE: 2~5 days of DT
- Site readiness: <u>https://twiki.cern.ch/twiki/bin/view/LCG/TapeTestsPreparation</u>
 - 16 T1 participated but only 4 sites (CERN,CNAF,CC-IN2P3,RAL) support all 4 VOs
- FTS Dashboard to monitor all but Alice's activity: <u>https://monit-grafana.cern.ch/d/e5o9PjDnz/fts-status-board-tape-challlenge-with-dt-write-and-a-dt-read-plots</u>
- "Tapetest" channel on Slack
- Final report:
 - VOs: <u>https://indico.cern.ch/event/1089983/</u> (spoiler: ATLAS & ALICE happier than CMS & LHCb!)
 - Sites:
 - https://indico.cern.ch/event/1092988/
 - <u>https://indico.cern.ch/event/1094310/</u>

Introduction to the tape challenge 2021 (2/3)

- Accounting & assessing the TC results vs TC expectations is a tricky matter:
 - Inconveniences on the TC orchestration:
 - VO readiness & coordination (LHCb did not test a Run3 scenario, CMS A-DT Rucio/FTS issues + RAL not involved in DT, CMS challenge continued beyond TC timeline)
 - Data volume (not large/sustained enough for stage/migration DT & A-DT targets)
 - Activity focus (inclusion or exclusion of production activity, different targets per activity)
 - Timing (start/end dates global vs per site, on request submission vs done)
 - Others: CRIC tuning (some sites did it, others didn't; some VOs rely on it, others don't), monitoring (ALICE was not in the FTS dashboard)
 - Inconveniences on the site side (i.e. CC-IN2P3):
 - Tape accounting still diffucult and limited monitoring tools (e.g. throughput views per VO only for staging, drive usage views only for staging but not per VO)
 - No available list of datasets

Introduction to the tape challenge 2021 (3/3)

- TC stats @CC-IN2P3 based on following guidelines:
 - Rough estimates based on broad assumptions
 - No distinction between TC and production activity
 - No CRIC tuning
 - ATLAS & CMS stats concern migration only for DT and staging only for A-DT
 - LHCb & ALICE stats concern migration only
 - Reference TC time table is the following

Time (CEST)	ATLAS		CMS		LHCb	Alice	
Start	DT	A-DT	DT	A-DT	11.10.21 at 10h00	11.10.21 at 10h00	
	11.10.21 at 10h00	13.10.21 at 10h00	11.10.21 at 10h00	12.10.21 at 22h00			
End	DT	A-DT	DT	A-DT	13.10.21 at 23h00	15.10.21 at 18h00	
	13.10.21 at 10h00	15.10.21 at 17h00	12.10.21 at 22h00	15.10.21 at 10h00			

CIN2P3

Results and assessments (1/2)

	VO	# Files	Volume	Avg Migration Rate	Avg file size
	ALL	277,035	1068 TB	2.31GB/s	3.85 GB
RATION	ALICE	111,412	233 TB	622MB/s	2.097 GB
	ATLAS	58,313	307 TB	1.77GB/s	5.29 GB
	CMS	21,947	235 TB	1.8GB/s	1.074 GB
GR/	LHCB	44,798	216 TB	983MB/s	4.83 GB
BIM	Others Vos	40,565	77 TB	205MB/s	1.91 GB

MIGRATION vs STAGING October 11~15, 2021 (CC-IN2P3 view and no distinction between DT and A-DT)

	VO	# Files	Volume	Stage Rate	Avg File Size
STAGING	ALL	495,755	808.954 TB	1.79GB/s	1.6GB
	ALICE	867	1.37 TB	10.23 MB/s	1.5GB
	ATLAS	415,704	550.028 TB	1.222 GB/s	1.3GB
	CMS	16,190	156.609 TB	1.061 GB/s	9.6GB
	LHCB	23,810	51.439 TB	1.33 GB/s	2.16GB
	Others Vos	39,184	49.508 TB	112.65 MB/s	1.2GB

Results and assessments (2/3)

	Throughput (GB/s)	ATLAS [1]		CMS [1]		LHCb [1]	ALICE [2]
VIEW		DT(w)	A-DT(r)	DT(w)	A-DT(r)	DT _(w)	DT(w)
	Target	1.4	1.2	0.9	1.5	1.26	0.4
LHC VOS ⁴	AVG	1.52	0.89	0.57	1.22	0.78	0.54
	MAX	2.22	2.63 Perform	2.35 nance ga	6.73	2.42	
	discrepancies /						
N	Throughput (GB/s)	ATLAS		CMS		LHCb	ALICE
CC-IN2P3 VIEW		DT(w)	A-DT(r)	DT(w)	A-DT(r)	DT(w)	DT(w)
N-S	Target	1.4	1.2	0.9	1.5 🖌	1.26	0.4
2	AVG	2.45	1.02	0.65	3.2	1.0	0.59
	MAX	-	2.7	1	5.0		

[1] https://monit-grafana.cern.ch/d/e5o9PjDnz/fts-status-board-tape-challlenge-with-dt-write-and-a-dt-read-plots?from=1633903200000&orgId=20&to=1634335199000&var-activity=All&var-bin=1h&var-dst_country=All&var-dst_site=All&var-dst_site=All&var-dst_server=All&var-group_by=vo&var-protocol=All&var-src_country=All&var-src_site=All&

[2]

https://indico.cern.ch/event/1089983/contributions/4581916/attachments/2335897/3981407/ALICE%20custodial%20stora ge%20challenge%20-%20results.pdf

VOs VIEW vs SITE VIEW (per VO & period)

- Assessment based on VOs' view:
 - ALICE target: done
 - LHCb target: not done but not site-related (FTS knobs and EOS gridftp gateways)
 - ATLAS targets: DT done but not A-DT
 - CMS targets: neither DT nor A-DT but A-DT staging throughput better than ATLAS, why? (pattern already noticed during past ATLAS tape stress test)
- Comparison between VO's view vs CC-IN2P3 view:
 - ALICE view vs CC-IN2P3 view stats match
 - LHCb view vs CC-IN2P3 view do not match but not by far (maybe only matter of time window)
 - ATLAS & CMS view vs CC-IN2P3 view: migration/staging stats do not match, and A-DT avg staging throughput from CC-IN2P3 >> avg throughput from FTS dashboard, why? Are we watching the same time series? Indeed as CMS reported, CC-IN2P3 avg throughput is ranked first for staging and migrating (in both cases > 4GB/s). Or maybe FTS dashboard does not count the staging failures (as already noticed also in the past ATLAS Tape Stress Test)?

CMS vs ATLAS staging performance during A-DT (1/7)

CC-IN2P3 setup

- Tape/drive resources are shared by all VOs (LHC and non-LHC)
- HPSS T10K-D Media migration (repacks) suspended during the TC
- HPSS Staging Configuration (based on TREQS staging scheduler):
 - Jaguar-E/TS1160 (Drive nominal speed 450MB/s)
 - 46 drives available for staging and migration: staging scheduler (TREQS) requests max 32 drives at each staging pass (so max 14 drives are left for migrations)
 - T10KD (Drive nominal speed 240MB/s)
 - 48 drives only for staging
 - Pending time for staging requests set up to minimum 4min (but there is no max and the staging file can be served after hours)
 - Migration cycle is every 6h (it applies to files written > 2h ago)
 - File size class setup (more relevant than file family): it determines the number of drives used on migration. For LHC VOs:
 - COS 12 (64MB 2GB): 5 drives
 - COS 14 (> 2GB): 6 drives

- On migration:
 - All VOs compete for available drives (soft-limited to 14) and with same technology (namely Jaguar-E)
 - File size is also relevant due to HPSS file class drive distribution (the lower the file size the less # of drives)
 - Compared to other VOs, the # files in COS12 for CMS is negligible
- On staging:
 - all VOs compete for 80 drives on staging, BUT with 2 different technologies (so throughput depends on the data distribution)
 - There are less Jaguar-E drives available on staging than for T10K-D
- Additional info:
 - We'll see later that there is more competition for Jaguar-E drives than for T10KD drives
 - Jaguar-E drives underperform on staging wrt migration performance

CMS vs ATLAS staging performance during A-DT (2/7)

- ATLAS staging was continuous during TC with peaks also during DT
- CMS staging was more concentrated especially during last day of A-DT

CMS vs ATLAS staging performance during A-DT (3/7)

ATLAS staging A-DT: Oct 13, 10h - Oct 15,

CMS vs ATLAS staging performance during A-DT (4/7)

බ

CMS staging A-DT: Oct 12, 22h - Oct 15, 10H

18/11/2021

CMS vs ATLAS staging performance during A-DT (5/7)

STAGING activity during the Tape Challenge

- At a closer look to A-DT, T10KD drive max & avg usage >> Jaguar-E max & avg usage, besides Jaguar-E max usage < 36 (36 is the max available)
 - 48 max used drives during A-DT for everyone's staging activity (including CMS)
 - 32 max used drives during A-DT practically only for CMS staging activity
- The used tape stats show that most of CMS data was in T10KD tapes

18/11/2021

CMS vs ATLAS staging performance during A-DT (6/7)

STAGING COMPETITORS: Oct 11, 10h - Oct 15, 17H

CMS vs ATLAS staging performance during A-DT (7/7)

- Recall performances on Jaguar E/TS1160 lower than expected (affecting probably more ATLAS than CMS staging throughputs), why?
- We enabled file aggregation on tape for large file (>1GB) in order to improve write performances on TS1160.
 - Aggregation : HPSS feature that aggregates multiple files (up to 50) on a single tape segment.
- During the tape challenge, we noticed that the tape drive position time is greater than expected when reading file within the aggregate.
 - Tape drive positions itself at the beginning of the aggregate segment, then it reads the whole segment until reaching the requested file
 - Fast positioning feature (i.e. Tape Order Recall) is not used when reading files from an aggregate.
- Problem under investigation :
 - Workaround : enable Full Aggregate Recall (after migration to HPSS 8.3 in december)
 - The bug should be definitely fixed in HPSS v9.3 (feature CR 521)

CONCLUSIONS

- Accounting and assessing the tape challenge is tricky wrt the TC goal
 - "Shared resources" implies great competition across activities and VOs (LHC and non-LHC) as a suitable TC orchestration could make evident
 - Still some bottlenecks outside T1's perimeter (EOS grdiftp gateways, FTS/Rucio miscommunications)
- CMS staging performance during A-DT better than ATLAS b/c
 - Bigger files (good for both migration and staging)
 - Less competing activities from other VOs
 - Less scattered across tapes
 - Better data distribution across drive sets (more staging drives for CMS and underperforming drives for ATLAS)
 - Déjà vu from the past ATLAS tape stress test

Merci!

BACKUP