

LOFAR Use Cases - DAC21

V.N. Pandey, Yan Grange (ASTRON, NL) ESCAPE WP2, 21 Oct 2021

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

Contents:-

Low Band Antennae (10-90 MHz)

- Overview (LOFAR, Workflow)
- Use Case 1 Data Lake as Long Term Archive
- Use Case 2 Data Processing, ESAP, DLaas
- Use Case 3 Legacy Archive Import (??)
- Use Case 4 Beyond DAC21 (not covered)

High Band Antennae (110-240MHz)

LOFAR in one slide

From the first stars to lightning on earth, and anything in between (10-240MHz)

Ideally, storage of the offline processing is the input RSE.

Central Processing Cluster

Offline - Near Real Time

This could be Data Lake (incl future new LTA sites)

В

Total ~ 50PB expected ~ 4-7PB/year

ong Term Archive

LOFAR

Looking into near future

LOFAR Upgrade (Planned):-

- LOFAR Mega Mode (multiple overlapping science cases in parallel) (<30% data increase)
- DUPPLO (Both LBA & HBA Observations in parallel) (<50% data increase)
- LOFAR2.0 (more stations & upgrade) (increase depends on plan but <<50% increase)
- Except occasional cases 20Gb is acceptable.

Use case 1: Datalake as LTA

- Ingest data from a two nodes representing our processing cluster into the datalake ("LTA")
 - Typically we have 20Gbit/s data streams right now so 2 nodes with 10Gbit interfaces attempt to model that
 - 1 Targets, 2 calibrators
 - Typically 6-8 hr observations, so the tests also takes similar time.
- Manual transfer to a non-deterministic RSE.
 - Ideally this would be the storage of the Central Processing.
 - But maybe we want to upload it manually (for operational reasons)
 but then we may want to use tooling optimised for our data

Use case 1: Datalake as LTA (QOS)

Stage	QoS level	Comment
Upload	Fast (non-det RSE)	Upload is to a non-deterministic RSE. Storage that needs to be able to support 10Gbps ingest (or more)
First day after upload	Fast + Cheap	In normal circumstances this would be a week, but for DAC21 we keep it to a day. Keep data on fast storage to give the user the chance to get to the data. NB: This Fast can be a different one from the upload one, as long as the user can get the data from there.
Second day after upload ("forever")	Cheap	Data can be on a cheap QoS for the rest of its lifetime. For processing (Use Case 2) there will be a step putting it back to a Fast QoS for downloading/direct data access.

Use case 1: To do

- Non-deterministic RSE for upload (need to follow up on this*)
- Prepare data (One observation already there and another to be selected)
- Prepare two nodes of upload (one is ready, other one is being requested)
- Data Volume: (~15-20 TB); we will monitor progress and success measures will be defined.
- Typically 15TB of data in 480 files (~60G per file for target, 2GB per file cal).

Use case 2: Data Processing & ESAP, DLaaS

Use case 2:

- Use data that is on the data lake to make an image, and combine it with the image of another wavelength to create a multiwavelength image (optional).
 - For an image we need a target and a calibrator observation that each consist of many (244) sub bands (i.e. frequency band data).
 - Want to create one dataset for the target and one for the calibrator
 - Create a container (the 'processing package') with both the target and calibrator dataset.
 - Maybe for demonstration purpose, create another **dataset** with the currently present **target** and the same **calibrator** as before to show that a **dataset** can be in multiple containers.
 - We will use one of our custom build pipelines (Prefactor or Raphtor) and perhaps pre-calibrated data set to save processing time.
 - Some of the data to be used may not be public but the resulting image will be public.

Use case 2: (QoS)

Stage	QoS level	Comment
Staging	Fast + Cheap	Fast QoS is the place where users will access the data.
First day after staging	Fast + Cheap	In normal circumstances this would be a week, but for DAC21 we keep it to a day. Keep data on fast storage to give the user the chance to get to the data.
Second day after staging ("forever")	Cheap	Basically back to the normal long-term stage

Use case 2: To do

- Data on the data lake to be processed/imaged.
- Get a DLaasS notebook with LOFAR software (in a singularity container).
- We will monitor progress and success measures will be defined.
- DLaaS notebook with LOFAR software stack
- DLaaS that can read the ESAP shopping basket
 - "poor man's solution is copy-pasting, and this is already there.
- Find a good-looking (extended) source (nice image)
- Data Volume (~2-3 TB)

Use case 3: Legacy Archive Import

For DAC21 one location is of course enough. Proposal to use SURF

The current LTA

Use case 3: To do

- Need to discuss with AAI experts whether cross-VO transfers are realistic.
- Else we need to set up a special RSE

Use case 3: To do

- In a transition phase, one would like to include current archives in the Data Lake
 - Complication of integration of an existing LTA end point in the ESCAPE Rucio:
 - Multi-VO support (with VO-crossing data streams... Simple translation lofar:/lofar/user => escape:/lofar is probably enough).
 - Keep it read only (though lofar:/lofar/user is read-only anyway)
 - 'legacy' LTA initially only contains unregistered data. Not sure what the best approach here is (register all that's there, only register that what users request, ...)
- If the multi-VO is too complex, we can assume in the future the LOFAR Rucio will probably run in the same VO as the LTA so we could create a special RSE which simulates the LTA.
- This may be considered a 'special QoS' level, but haven't thought this through...

Plans (Dates):-

- Nov 2-5 (Preparation)
- Nov 9-12 Mock tests
- Nov 22-26 DAC21
- 2022 CoDEX node as RSE (local) including
 EoR Data

Low Band Antennae (10-90 MHz)

> High Band Antennae (110-240MHz)

EOR Data Lake

Thank You

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

