SENSITIVITY OF THE CHERENKOV TELESCOPE ARRAY TO DARK MATTER INDUCED EMISSION FROM PERSEUS GALAXY CLUSTER

Judit Pérez-Romero

In collaboration with R.Adam, G. Brunetti, M. Hutten,
 École Polytechnique)
 M.Á.Sánchez-Conde & "CTA Galaxy Clusters Task Force"

judit.perez@uam.es

ACIÓN

Séminaries LLR (CNRS & École Polytechnique) 29/11/2021

cherenkov telescope

arrav

DARK MATTER EVIDENCE

Galactic rotational curves

• CMB anisotropies

Galaxy Clusters

+ strong, weak lensing...

• Different DM candidates, wide range of masses:

DARK MATTER IN ACDM COSMOLOGY

GAMMA-RAY DM SEARCHES

- Optimal conditions for indirect DM searches:
 - High DM density ($\phi_{DM} \propto \rho_{DM}^2$ for annihilation, $\phi_{DM} \propto \rho_{DM}$ for decay)
 - Massive nearby objects ($\phi_{\rm DM} \propto M/d_{Earth}^2$)
 - Low astrophysical background

GAMMA-RAY DM SEARCHES

- Optimal conditions for indirect DM searches:
 - High DM density ($\phi_{DM} \propto \rho_{DM}^2$ for annihilation, $\phi_{DM} \propto \rho_{DM}$ for decay)
 - Massive nearby objects ($\phi_{\rm DM} \propto M/d_{Earth}^2$)
 - Low astrophysical background

GAMMA-RAY EMISSION IN GALAXY CLUSTERS

- Acceleration mechanisms

Cosmic-rays

Hadrons

- Largest gravitationally bound structures formed by gravitational collapse
- Masses of order ~10¹⁴-10¹⁵ M_{\odot}
- Components:
 - Baryonic Matter
 ICM (~ 15% 17%)
 - Dark Matter (~80%)
- Even supposedly virialized objects, a lot of activity Merger events

Leptons

- Feedback from galaxies and AGNs
- Magnetic fields
- Turbulence

Diffuse synchrotron emission*

Chandra: NASA/CXC/SAO/Bulbul+14; XMM: ESA

Gamma-rays

GAMMA-RAY EMISSION IN GALAXY CLUSTERS

- Acceleration mechanisms

Hadrons

Cosmic-rays

- Largest gravitationally bound structures formed by gravitational collapse
- Masses of order ~10¹⁴-10¹⁵ M_{\odot}
- Components:
 - Baryonic Matter
 ICM (~ 15% 17%)
 - Dark Matter (~80%)
- Even supposedly virialized objects, a lot of activity Merger events

Leptons

- Feedback from galaxies and AGNs
- Magnetic fields
- Turbulence

Diffuse synchrotron emission⁴

Chandra: NASA/CXC/SAO/Bulbul+14; XMM: ESA

NGC1275 in Perseus Galaxy Cluster

Gamma-rays

No clear detection but some hints claimed...

Ackermann+15 [Fermi-LAT Collab.], Xi+18, Adam+21

GAMMA-RAY DM SEARCHES IN CLUSTERS?

- Optimal conditions for indirect Dark Matter (DM) searches:
 - High DM density
 - Massive nearby objects
 - Low astrophysical background (Cosmic Rays CR)

Decay

- Most massive known objects
- Located in the local Univers
- 80% of its mass is DM

Best possible targets to consider

Annihilation

Competitive compared to other prime targets (e.g. dSphs) considering:

- Smooth DM halo component +
 - Halo substructure

PREVIOUS GAMMA-RAY DM SEARCHES IN GALAXY CLUSTERS

Fermi-LAT - Annihilation

THE CHERENKOV TELESCOPE ARRAY (CTA)

- Future of ground-based Very High Energy (VHE) gamma-ray astronomy
- 2 arrays: Northern Array (La Palma, Spain) and Southern Array (Paranal, Chile)

CTA PERFORMANCE

Preliminary Performance Capabilities

https://www.cta-observatory.org/

CTA has superb capabilities for DM gamma-ray searches

KEY SCIENCE PROJECT: PERSEUS GALAXY CLUSTER WITH CTA

- Among local clusters, Perseus is the brightest in X-ray sky.
- Cool-cored, relaxed cluster

Object	l [deg]	b [deg]	$d_L [Mpc]$
Perseus	150.57	-13.26	75.01

 Host two AGNs, the BCG NGC1275 and IC310, both variable

Object	l [deg]	b [deg]
NGC1275	150.58	-13.26
IC310	150.18	-13.74

BCG aligned with X-rays center

Our goal: State-of-the-art study of the sensitivity of CTA to Dark Matter and Cosmic-Ray signals in Perseus cluster

We use the lastest version of the CTA science tools with the latest Instrument Response Functions (IRFs) to perform the analysis

Our goal: State-of-the-art study of the sensitivity of CTA to Dark Matter and Cosmic-Ray signals in Perseus cluster

Use lastest version of CTA science tools with latest Instrument Response Functions (IRFs) to perform the analysis

DARK MATTER MODELLING

DARK MATTER MODELLING (I): MAIN HALO

State-of-the-art parametrization of the DM in galaxy clusters:

$$\langle \rho_{\text{tot}} \rangle (r) = \rho_{\text{sm}}(r) + \langle \rho_{\text{subs}} \rangle (r) \xrightarrow{\text{Assume density profile}} \rho(r) = \frac{\rho_0}{(\frac{r}{r_s})[1 + \frac{r}{r_s}]^2}$$

Navarro – Frenk – White (NFW) Navarro+96, Navarro+97

• To build the DM profile, we assume a concentration-mass relation $(c_{200} - M_{200})$:

DARK MATTER MODELLING (II): SUBSTRUCTURE

- Galaxy clusters are the most massive objects today, large amount of substructure expected
- Inclusion through $\rho_{\rm DM}$ using state-of-the-art subhalo models

EXPECTED DM SIGNAL

MORPHOLOGY OF DM SIGNAL

CTA DM ANALYSIS ROADMAP

CTA ANALYSIS CONFIGURATION (I): ON/OFF ANALYSIS

- First analysis approach
 - Only includes gamma-ray emission from DM and background from IRFs
 - Assumes Perseus as a point-like source
 - Historically used in Imaging Air Cherenkov Telescopes (IACTs) as MAGIC
- Different set-ups tested, best results for:

Regions	1 ON/3 OFF	
Regions radius [deg]	0.5	
Pointing (l, b) [deg]	(150.57, -13.26)	
Offset [deg]	0.5	

N _{obs}	50		
T_{obs} [h]	300		
IRFs	North_z20_50h, prod3b-v2		
Energy range [TeV]	0.03 - 100		

Lowest level of complexity, more constraining results

Direct comparisons

CTA ANALYSIS CONFIGURATION (II): TEMPLATE FITTING

• Final analysis goal:

SUMMARY

- Galaxy clusters are excellent target for indirect DM searches (massive, closeby)
- Still no clear gamma-ray signal from clusters detected
- CTA is the future for VHE gamma-ray astronomy, with superb capabilities for WIMP searches
- Perseus Galaxy Cluster has optimal conditions for observation with CTA-North
- State-of-the-art DM modelling for Perseus including halo substructure
- Complete and comprehensive study of the different expected emissions: DM+CR+AGNs
- ON/OFF analysis for annihilation and decay main results:
 - Annihilation upper limits of $\sim O(10^{-23})$ cm³ s⁻¹
 - Decay upper limits of $\sim O(10^{26})$ s : will be the best limits
 - Most optimistic limits
- On-going template fitting analysis and inclusion of J/D-factor uncertainties for more realistic predictions

Thanks for your attention!

Back-up material

OBTENTION OF DM MODEL PARAMETERS

- State-of-the-art parametrization of the DM in galaxy clusters: $\langle \rho_{tot} \rangle(r) = \rho_{sm}(r) + \langle \rho_{subs} \rangle(r)$
- \blacksquare Assume a DM profile $\rho(r) = rac{
 ho_0}{(rac{r}{r_s})[1+rac{r}{r_s}]^2}$ [NFW]

2 Assume a concentration-mass relation ($c_{200} - M_{200}$): Sánchez-Conde&Prada I 4 $c_{200}(M_{200}, z = 0) = \sum_{i=0}^{5} c_i \times \left[\ln \left(\frac{M_{200}}{h^{-1} M_{\odot}} \right) \right]^i$

3 Assume spherical collapse from an overdensity $\Delta = 200$ over the critical density $\Delta_{200} = \frac{3M_{200}}{4\pi R_{200}} \rho_{crit}$

4 Compute remaining parameters

DIFFERENTIAL ANNIHILATION FLUX PROFILE

General parameters

z	0.017284	l, b	$150.58 \deg, -13.26 \deg$
M_{200}	$7.52 \times 10^{14} \ \mathrm{M}_{\odot}$	R_{200}	$1865.0 \ \mathrm{kpc}$
c_{200}	5.03	θ_{200}	$1.42 \deg$
r_s	370.82 kpc	$ heta_s$	$0.28 \deg$
d_L	75.01 Mpc	$ ho_s$	$299581~{ m M}_{\odot}/{ m kpc}^3$

CTA ANALYSIS ELEMENTS

• Likelihood ratio test:

• Uncertainties in the J/D-factor enter through:

CHARACTERISTICS OF THE SIMULATIONS

- One example simulation:
 - Annihilation
 - 10 TeV
 - *b* channel

DM CONSTRAINTS: I σ BAND

Limits for Perseus for MED annihilation model (point-like morphology & no J-factor uncertainties)

31

DM CONSTRAINTS: ON/OFF SET-UPS

Limits for Perseus for $\tau^+\tau^-$ annihilation and decay models (point-like morphology & no J/-D-factor uncertainties)

DM CONSTRAINTS: MIN-MED-MAX

Limits for Perseus for $\tau^+\tau^-$ annihilation model (point-like morphology & no J-factor uncertainties)

DM CONSTRAINTS: DECAY INSIGHT

Limits for Perseus for decay ON/OFF analysis (point-like morphology & no D-factor uncertainties)

34

DM CONSTRAINTS: CTOOLS

Limits for Perseus for MED annihilation model and decay, assuming point-like morphology and no J/D-factor uncertainties

General agreement with gammapy results accounting for statistical errors and different configurations

BEYOND KSP: SAMPLE OF GALAXY CLUSTERS

- Search in catalogues for other interesting galaxy clusters to study in a DM context
- Natural extension of the KSP: why just focus on Perseus for DM searches?
- Built up of "gold" cluster sample for DM studies
- Will follow similar procedure than KSP, just applied to few other galaxy clusters and DM focused:

• Well-known M_{200} : from observations in X-rays using Schellenberger&Reiprich I 7 • State-of-the-art parametrization of ρ_{DM} O_{DM} • Local clusters: z < 0.1 (Ando&Nagai I 2) $\longrightarrow J \propto \frac{1}{d^2}$

BEYOND KSP: TARGET SELECTION

- Sample based on extended HIFLUGCS catalogue (Reiprich&Borhinger02), Ackermann+10 [Fermi-LAT Coll.] and Ackermann+14 [Fermi-LAT Coll.].
- 50 local clusters, $f_x \ge 1.7 \cdot 10^{-11}$ erg s⁻¹ cm⁻²

cta

BEYOND KSP: DM MODELLING

DARK MATTER MODELLING: FORNAX

 Adopt baseline DM model (substructure scenario) α=1.9 for the slope of the sub-halo mass function

