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Motivation: GUT’s from F-theory
✤ F-theory GUT local models have recently attracted a lot of attention, 

and shown to contain a number of phenomenological virtues
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✤ F-theory: type IIB sugra + loc. sources → geometry (strong coupling)
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and shown to contain a number of phenomenological virtues

✤ One can understand their main features in terms of type IIB models

✦ Local Models → gauge coupling unification
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Motivation: GUT’s from F-theory
✤ F-theory GUT local models have recently attracted a lot of attention, 

and shown to contain a number of phenomenological virtues

✤ One can understand their main features in terms of type IIB models

✤ The main new ingredients in F-theory w.r.t. type IIB models are

✦ D7-branes → (p,q) 7-branes

✦ U(N) gauge group → U(N), SO(N), E6,7,8 gauge group

F-theory can combine :

• GUT’s   (heterotic)
• Local models  (D3-branes)
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Motivation: GUT’s from F-theory
✤ F-theory GUT local models have recently attracted a lot of attention, 

and shown to contain a number of phenomenological virtues

✤ In particular considerable effort has been devoted to show that in the 
range MSUSY << M << MGUT one can have

SM gauge group 

MSSM matter content

No exotic matter

Acceptable Yukawas and μ-term

Acceptable proton lifetime
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No 5D & 6D operators
(No Higgs triplets)

Beasley, Heckman, Vafa’08
Donagi & Wijnholt’08



Motivation: GUT’s from F-theory
✤ F-theory GUT local models have recently attracted a lot of attention, 

and shown to contain a number of phenomenological virtues

✤ In particular considerable effort has been devoted to show that in the 
range MSUSY << M << MGUT one can have

SM gauge group 

MSSM matter content

No exotic matter

Acceptable Yukawas and μ-term

Acceptable proton lifetime
R-parity

No 5D & 6D operators
(No Higgs triplets)

Beasley, Heckman, Vafa’08
Donagi & Wijnholt’08



F-theory Yukawas
✤ In this framework, MSSM matter localizes on complex curves on S

✤ Yukawas couplings then arise from the triple intersection of these 
curves
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F-theory Yukawas
✤ In this framework, MSSM matter localizes on complex curves on S

✤ Yukawas couplings then arise from the triple intersection of these 
curves

✤ The holomorphic piece of the Yukawas can be extracted from 
integrating the 8d Chern-Simons action
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F-theory Yukawas
✤ In this framework, MSSM matter localizes on complex curves on S

✤ Yukawas couplings then arise from the triple intersection of these 
curves → wavefunction overlap

Yij =
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S
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1̄ψ
j
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Heckman & Vafa’08
Font & Ibáñez’09
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so only those integrands invariant 
under this symmetry will survive...



F-theory Yukawas
✤ In this framework, MSSM matter localizes on complex curves on S

✤ Yukawas couplings then arise from the triple intersection of these 
curves → wavefunction overlap

✤ Solving the eom for the matter fields we have
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ψi
1̄ψ

j
2̄ϕ12 = fi(z2)gj(z1)G(z1, z̄1, z2, z̄2)

fi = z3−i
2

gj = z3−j
1

For constant fluxes G only depends on |z1|2 and |z1|2, so only Y33 ≠ 0

⇒

For general G one expects an expansion around the triple intersection,
with terms of the form                                               that contribute to
the other Yukawas

(z1z̄1)a(z2z̄2)b(z̄1)3−j(z̄1)3−i

However all such latter contributions cancel out

Cecotti, Cheng, Heckman, Vafa’09
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F-theory Recap
✤ The above setup provides an interesting framework to reproduce the 

flavor hierarchies present in the Standard Model

✤ One however needs a mechanism that modifies the above rank one 
Yukawa matrix by a small amount

✤ By the results of Cecotti et al.[0910.0477], such contribution does not 
arise from the seven-brane theory itself                                                
⇒ one must consider external effects that modify the superpotential

✤ It was proposed in Cecotti et al.[0910.0477] that

✦ Such effects could be bulk fluxes G3 = F3 - τ H3

✦ Their contribution is encoded in a non-commutative deformation

✤ In the following, we will argue that such effects can only be of        
non-perturbative origin



Rank one Yukawas from intersecting branes
✤ Models with rank one Yukawas can also be obtained in the context of 

intersecting D6-branes on toroidal orbifolds

(3)

i = 0 i =  1 i = 1

1/3 2/3

j =  1 j = 1

2/31/3

j = 0
(3)~

D6 brane c

(2)

D6 brane a

D6 brane b D6 brane c*

O6 plane

1/3
00

0

1/6

j* =  1 j* = 1

rbc

j* = 0

Nα (n1

α
, m

1

α
) (n2

α
, m

2

α
) (n3

α
, m

3

α
)

Na = 3 + 1 (1, 0) (1, 3) (1,−3)

Nb = 1 (0, 1) (1, 0) (0,−1)

Nc = 1 (0, 1) (0,−1) (1, 0)

Cremades, Ibáñez, F.M. ’03

Yijk = e−Aijk

U(3)xU(1)
USp(2)
USp(2)



Rank one Yukawas from intersecting branes
✤ Models with rank one Yukawas can also be obtained in the context of 

intersecting D6-branes on toroidal orbifolds

(3)

i = 0 i =  1 i = 1

1/3 2/3

j =  1 j = 1

2/31/3

j = 0
(3)~

D6 brane c

(2)

D6 brane a

D6 brane b D6 brane c*

O6 plane

1/3
00

0

1/6

j* =  1 j* = 1

rbc

j* = 0

Cremades, Ibáñez, F.M. ’03

Yijk = e−Aijk



✤ It was then proposed that this rank one problem could be solved by 
the one loop contribution of E2-instantons

Rank one Yukawas from intersecting branes

Abel & Goodsell’06

Conditions:
E2 rigid, O(1), and 

does not intersect the 
MSSM D6-branes

Yij = Y tree
ij + Y np

ij
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the one loop contribution of E2-instantons
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Conditions:
E2 rigid, O(1), and 

does not intersect the 
MSSM D6-branes

Yij = Y tree
ij + Y np

ij

Question: Can we apply this idea to F-theory?
How does Wnp look like?
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✤ In the latter case, one basically computes how, via its backreaction, 
the D3-brane position modifies the D7 gauge kinetic function

Wnp via backreaction

TΣ = VΣnp
4

+ i

�

Σnp
4

C4

fD7 = TΣ → TΣ − ln f(X)
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that it vanishes on top of the D7 4-cycle

✤ We can compute such superpotential

✦ In the one-loop open string channel

✦ In the tree-level closed string channel

✤ The result is
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Ganor’96
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Baumann et al.’06

n = #D7�sW np
D3 = M3e−fD7/n = A e−[TΣ−Tr ln f(ZD3)]/n

= A e−TΣ/n[detf(ZD3)]1/n



✤ Let us now replace the D3-brane by a D7-brane wrapping a 4-cycle S4

✤ If this D7-brane is magnetized (F ≠ 0) it will carry an induced D3-brane 
charge and tension, given by

✤ Hence, it will also backreact on the warping and the RR field C4.          
⇒ The position moduli of S4 should also couple to TΣ

✤ In fact, if S4 and Σ4np do not intersect, we can treat the D7 as             
ND3 smeared out D3-branes over S4, with density ρ = Tr F2/8π2

✤ We then obtain

Wnp for D7-branes

W np
D7 = A e−TΣ exp

�
1

8π2

�

S4

STr(ln f F ∧ F )
�

ND3 =
1

8π2

�

S4

Tr(F ∧ F )



✤ To extract the field dependence of this superpotential we               
must perform a non-Abelian Taylor expansion on the position         
field 
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✤ We can perform the same expansion for the D7-brane tree-level 
superpotential 

✤ We obtain the full superpotential

Wnp for D7-branes

Martucci’06W tree
D7 =

�

Γ5

Str Ω ∧ F

WD7 =
�

S4

�
(ιwΩ) ∧ tr(φ F ) +

1
2

θ Str(φ F 2) + . . .
�

�

S4

Tr(F (0,2)
S ∧ Φ) dim. 5 correction



✤ We have treated a magnetized D7-brane as a bunch of smeared out 
D3-branes but, actually, its backreaction is more involved

✤ Indeed, D7-branes also source the axio-dilaton τ. It is easy to see, 
however, that the action of a O(1) E3-instanton is independent of τ    
⇒ No further contributions to Wnp 

✤ We have found that the non-perturbative correction is given by a 
higher dim. operator. The contribution to the Yukawas can be 
extracted from terms involving only three fluctuations

     ... as well as from the modified eom

Comments

�

S4

θ �ij̄kl̄Str
�
φ DiAj̄DkAl̄

�

Dk = α�1/2(∂k + i�Ak�∧) (Froggat-Nielsen mech.)



✤ F-theory models can reproduce a flavor hierarchy, but without any 
external effect they suffer from a rank one Yukawa problem

✤ We have shown that such effect can be generated by non-perturbative 
dynamics, which correct the seven-brane tree-level superpotential

✤ Such correction exists if the seven-brane carries D3-brane charge. 
The corrections to WD3 and WD7 are closely related

✤ Here the corrected Yukawas are not perturbatively forbidden by 
anomalous global U(1) symmetries. The non-perturbative corrections 
are however relevant in the sense that they lift degeneracies.

✤ While we have worked in the type IIB limit, our results extend trivially 
to F-theory

✤ The non-perturbative correction to the Yukawas can be understood in 
terms of a dim. 5 operator multiplied by a function θ

Wnp Recap



✤ This D7-brane superpotential 

✤ can also be generated in certain exotic type IIB vacua known as        
β-deformed backgrounds

✤ These are naturally described in the language of generalized complex 
geometry, that encodes the Killing spinor of the background in terms 
of polyforms
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Gualtieri’04



✤ This D7-brane superpotential 

✤ can also be generated in certain exotic type IIB vacua known as        
β-deformed backgrounds

✤ These are naturally described in the language of generalized complex 
geometry, that encodes the Killing spinor of the background in terms 
of polyforms

✦ For a warped Kähler manifold Ψ2 = Ω3

✦ For a β-deformed background Ψ2 = ψ1 + Ω3

✤ Then:

Wnp as a β-deformation

WD7 =
�

S4

�
(ιwΩ) ∧ tr(φ F ) +

1
2

θ Str(φ F 2) + . . .
�

ψk = βijΩijk

WD3 = χ0

WD7 =
�

S4

(πα�χ0F ∧ F + χ2 ∧ F )
dχ2 = Ω
dχ0 = ψ1Martucci’06

Gualtieri’04



✤ It has been argued that the effect of a β-deformation on a D-brane 
worldvolume can be seen as a non-commutative deformation of the 
gauge theory

✤ This suggests the identification

✤
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Pestun’06

np correction ⇔ nc deformation



✤ It has been argued that the effect of a β-deformation on a D-brane 
worldvolume can be seen as a non-commutative deformation of the 
gauge theory

✤ This suggests the identification

✤ Indeed, in the β-deformed superpotential the F-flatness condition 
reads

✤ and so                  . It can however be expressed as the condition

✤ with     constructed via the Seiberg-Witten map

Wnp as a β-deformation

Kapustin’03
Pestun’06

np correction ⇔ nc deformation

(ιXψ1)|S4 F 2 + 2(ιXΩ)|S4 ∧ F = 0 ∀X ∈ TM |S4

F (0,2) �= 0

F̂

F̂ (0,2) = 0



✤ It has been argued that the effect of a β-deformation on a D-brane 
worldvolume can be seen as a non-commutative deformation of the 
gauge theory

✤ This suggests the identification

✤ In fact, one can map the nc superpotential

Wnp as a β-deformation
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ŴD7 =
�

S4

tr(ϕ̂ � F̂ )

WD7 =
�

S4

�
(ιwΩ) ∧ tr(φ F ) +

1
2

θ Str(φ F 2) + . . .
�

F̂αβ = Fαβ +
1
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1
4
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+(DδFαβ + ∂δFαβ)Aγ ] +O(θ2)

φ̂ = φ +
1
4
Θαβ [Aα(∂βφ + Dβφ)

+(∂βφ + Dβφ)Aα] +O(θ2)

SW map



✤ Motivated by F-theory, we have shown that non-perturbative effects 
correct non-trivially the tree-level superpotential of seven-branes

✤ We have provided an explicit and simple expression for this correction, 
which allows to compute its effects even at a local level

✤ The correction can either be expressed in terms of a dim. 5 operator 
or as a non-commutative deformation, via the SW map

Conclusions



✤ Motivated by F-theory, we have shown that non-perturbative effects 
correct non-trivially the tree-level superpotential of seven-branes

✤ We have provided an explicit and simple expression for this correction, 
which allows to compute its effects even at a local level

✤ The correction can either be expressed in terms of a dim. 5 operator 
or as a non-commutative deformation, via the SW map

✤ It was argued by Cecotti et al.[0910.0477] that such nc deformed 
superpotential generically solve the rank one Yukawa problem. There, 
however, the origin of the nc deformation was advocated to bg fluxes

✤ Reversing our above discussion, one can see that the nc deformation 
for D7-branes has the same origin that a superpotential for D3-branes

✤ However, the no-scale condition for these wCY backgrounds implies 
that WD3 = 0 at tree-level ⇒ nc deformation must have a np origin!!

Conclusions


