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Determinantal measures
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Definition

Setup: Euclidean vector space E , subspace H ⊂ E , orthonormal basis
B = {e1, . . . , ed} of E .

E

H

∧
nE

∧
nH

The Plücker coordinates of H in the basis B are scalar coefficients
associated with the subsets of B of cardinality n = dimH.

By Pythagoras’ theorem in the n-th exterior power of E , the sum of the
squared modulus of these coefficients is equal to 1.

This defines a probability measure on
(S
n

)
where S = {1, . . . , d}.

Let X be the corresponding random n-subset of S .
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Incidence measure

For each I ∈
(S
n

)
, the probability P(X = I ) is the square of a determinant;

the squared volume of the projected shadow of a unit cube in H on the
coordinate subspace Vect(ei : i ∈ I ):

P(X = I ) = det(ΠH)II = cos2(H,Vect(ei : i ∈ I ))

One can view X as a point process. It is called determinantal1 in view of
the following equalities for its incidence measure:

P(J ⊂ X) = det(ΠH)JJ

for all J ⊂ S .

1Terminology due to Alexei Borodin (∼ 2000), the original name given by Odile Macchi in

her foundational work (1975) being fermionic process
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Mean projection theorem

Let Q =
⊕

i∈X Cei be the random coordinate subspace generated by X.
We have E = Q⊕ H⊥.

Lyons (2003): ΠH = E[PQ
‖H⊥ ]

where PQ
‖H⊥ is the projection on Q parallel to H⊥

0
Q

Q⊥

H

H⊥
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Bases and independent sets

The n-subsets I for which P(X = I ) > 0 are precisely those for which the
family {ΠH(ei ), i ∈ I} is linearly independent and thus forms a basis of H.

In particular, for any n-subset I in the support, and J ⊂ I , the family
{ΠH(ei ), i ∈ J} is linearly independent.

This introduces a notion of combinatorial geometry on the finite set S .

This combinatorial geometry is measured: the incidence measure assigns a
weight to each independent set, whose restriction to the collection of
bases is the determinantal probability measure.

This point of view on determinantal measures was introduced by Russell
Lyons (2003).
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Two complementary viewpoints

combinatorial geometry intrinsic combinatorial weight
(S , I) l normalisation by

partition function

determinantal Euclidean space and o.n. basis
probability measure H ⊂ E , (e1, . . . , ed )

Examples2:

uniform measure on spanning trees

weighted measure
∏

c:cycle |1− holh(c)|2 on forests of unicycles

To put these examples into a larger family, I will now present

combinatorial geometries on the set of edges of a graph,

determinantal probability measures associated with particular
Euclidean spaces attached to a graph.

2In both cases, the partition function is given by det′∆
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Combinatorial geometries on graphs
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Combinatorial geometries

A matroid or a combinatorial geometry3 on a finite set S is a non-empty
collection I of subsets of S , called independent subsets, such that

if I ∈ I and J ⊂ I , then J ∈ I
if I , J ∈ I and |J| < |I |, then ∃i ∈ I \ J, such that J ∪ {i} ∈ I

The maximal independent sets are called bases.

The minimal dependent sets are called circuits.

Examples:

Linear algebra: S family of vectors of a vector space, I the linearly
independent subsets

Graph theory: S the set of edges of a finite graph, I the acyclic
subsets

3Terminology proposed by Gian-Carlo Rota to replace the first introduced by Hassler

Whitney (1935) in his founding study (independently carried out by Takeo Nakasawa)
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The circular matroid

S set of edges of a finite connected graph, I collection of spanning forests.

Bases: spanning trees
Circuits: simple cycles

Number of sp. trees: |F1(G)| = |V(G)|−1 det′∆, where ∆ = d∗d is the Laplacian

(Kirchhoff, 1847)
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The circular matroid and associates

Two simple operations to construct new matroids on a given set S :

Union: I = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}
Dual: B∗ = {S \ B : B ∈ B}

From the circular matroid, by taking unions and duals, one can generate
new matroids, the bases of which are classes of subgraphs with specific
topological properties.
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The circular matroid and associates

The case of Mk,0:

Bases: spanning forests with k + 1 connected components

Circuits: simple cycles and spanning forests with k connected
components

The case of M0,`:

Bases: connected subgraphs with ` cycles

Circuits: minimal subgraphs X with `+ 1 cycles

Liu–Chow (1981), Myrvold (1992): one can compute |Fk(G)| in polynomial time.

Question: can one compute |C`(G)| in polynomial time when G is non planar?
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The circular matroid and associates

Let (k , `) ∈ {0, . . . , |V| − 1} × {0, . . . , b1(G)}.
Define a matroid Mk,` with set of bases Bk,`(G) given by the collection of
subgraphs X of G satisfying the conditions

χ(X ) := b0(X )− b1(X ) = k − `+ 1

max(0, `− k) ≤ b1(X ) ≤ `

b0(X )

b1(X )

b1(G)

0
0 1 |V(G)|

b0(X ): number of connected components of X

b1(X ) = |E(X )| − |V(X )|+ b0(X ) : number of independent cycles (first Betti number of X )14 / 31



The circular matroid and associates

An element of B5,3:

Here b0(X ) = 6 and b1(X ) = 3, and χ(X ) = b0(X )− b1(X ) = 3.
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The bicircular matroid

There are other important matroids on graphs.

S set of edges of a finite connected graph, I the collection of subgraphs
each of whose connected components has at most one cycle.

Bases: forests of unicycles
Circuits: minimal connected subgraphs with b1 = 2 (	, ◦◦,◦−◦)

Counting bases: it is #P-hard (Giménez–Noy, 2006), however there is an approximate

counting method (Guo–Jerrum, 2019)
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Measured combinatorial geometries
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Vector spaces of forms on a graph

A 0-form is a function on vertices.
A 1-form is a function on edges, antisymmetric.
Let Ω0 and Ω1 be the corresponding vector spaces.

Let d : Ω0 → Ω1 be the discrete derivative
and d∗ : Ω1 → Ω0 the discrete divergence.

df (e) = f (e)− f (e) and d∗ω(v) =
∑
e:e=v

ω(e)

Exact forms: imd ⊂ Ω1

Co-closed forms: ker d∗ ⊂ Ω1

Ω1 = imd ⊕ ker d∗
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Uniform spanning tree

The circular matroid is linearly representable: with H = im d , a subset
J ⊂ S is independent iff {ΠH(ei ), i ∈ J} ⊂ Ω1 is linearly independent.

Burton–Pemantle (1993): The uniform spanning tree is determinantal on
E = Ω1 associated with the subspace H = imd .
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Random connected subgraphs

An element of C4(G):

Let θ1, . . . , θk be linearly independent 1-forms in ker d∗. For each
X ∈ Ck(G), choose (γ1, . . . , γk) a basis of cycles of X , and define

P(X ) ∝
∣∣∣ det (θi (γj))1≤i ,j≤k

∣∣∣2
where θ(γ) =

∑
e∈γ θe .

Theorem 1 ([K.–Lévy, 2022])

This probability measure is determinantal associated with the linear
subspace H = imd ⊕Vect(θ1, . . . , θk).
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Random spanning forests

An element of F5(G):

Let ϕ1, . . . , ϕk be linearly independent 1-forms in im d . For each
X ∈ Fk+1(G), choose a basis (κ1, . . . , κk) of cuts determined by X , and
define

P(X ) ∝
∣∣∣ det (ϕi (κj))1≤i ,j≤k

∣∣∣2
where ϕ(κ) =

∑
e∈κ ϕe .

Theorem 2 ([K.–Lévy, 2022])

This probability measure is determinantal associated with the linear
subspace H = im d ∩Vect(ϕ1, . . . , ϕk)⊥.

The partition function
∑

X∈B w(X )
∏

e∈X xe generalizes the second Symanzik polynomial (k = 1).

All these real polynomials are stable (Borcea–Brändén–Liggett, 2009).
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Combinatorial geometries in higher rank
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Vector-valued 1-forms

We consider vector-valued 1-forms in CN , and a unitary connection h.

Motivation: graph embedded in a manifold, seen as the base of a vector
bundle of rank N; h is the parallel transport along an edge.

Fx

Fe Fy

x
y

e

he,x hy,e

he−1,yhx,e−1

There is a discrete covariant derivative dh and its adjoint d∗h .

ex y

f(x) f(y)

he,x

he−1,y

df(e)

Fx Fe Fy
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N = 1

For each forest of unicycles F , define

P(F ) ∝
∏

cycle c

|1− holh(c)|2

where holh(c) is the holonomy.

Kenyon (2009): This probability measure is determinantal associated with
the linear subspace H = imdh.

When h tends to 1 along θ (i.e. ht = e itθ, with t → 0), we recover
Theorem 1 about C1(G).
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N = 2

One can define a determinantal process associated with H = imdh, by
fixing an orthonormal basis of each fiber.

We represent the sample as two subgraphs (X1,X2)
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N = 2: the case h = id

Choose a vector u1
e ∈ C2 for each edge e. Define the kernel

Ke,e′ = 〈u1
e , u

1
e′〉Te,e′

where T is the kernel for the uniform spanning tree.

This kernel satisfies 0 ≤ K ≤ 1 and the associated determinantal measure
is the law of the subgraph X1.
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N = 2: limit h→ id

Consider the connection h = exp(tA) in the limit t → 0, where A is a

matrix-valued 1-form in u(2).

For each couple of connected spanning subgraphs (X1,X2) such that
b1(X1 t X2) = 2, choose a basis (γ1, γ2) of cycles of X1 t X2, and define

P ((X1,X2)) ∝
∣∣ detA (γ1)i1 A (γ2)i2

∣∣2
where A(γ)i is the i-th column of A(γ) =

∑
e∈γ Ae .

Theorem 3 ([K.–Lévy, 2022])

This probability measure is determinantal associated with the linear
subspace H = imdid ⊕Vect(A1,A2).

27 / 31



N = 2: general h

Trace : E(G)→ {0, 1, 2}, total occupation number

Theorem 4 ([K.–Lévy, 2022])

The trace of the determinantal measure associated with H = imdh is the
sum of two coupled random forests of unicycles.

Recall: In rank N = 1, it is simply a forest of unicycles with
distribution proportional to

∏
c:cycle |1− holh(c)|2

In rank N ≥ 2, we obtained more complicated combinatorial
expressions involving traces of holonomies
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N = 2: the case of holonomies in SU(2)

Distribution of the trace:
sum of two i.i.d. copies of random forests of unicycles, the law of which is
the quaternion-determinantal measure associated with imdh
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Thank you for your attention
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