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Spectrogram analysis

I Spectrograms are fundamental tools in time-frequency analysis.

I The spectrogram of a signal associating with each point in the
time-frequency plane is a localised measure of the energy of the signal at
that time and that frequency.

I A particularly significant domain of application is in the field of acoustics.

I For instance, AM-FM-type signals with a small number of components
admit spectrogram representations that are sparse.
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Spectrogram analysis

Fig. Left : spectrogram of white noise. Right : spectrogram of one fundamental mode corrupted by
white noise.
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Maxima of the spectrogram

I Classically, considerable attention has been focused on the maxima of the
spectrogram.

I This is related to the understanding that these capture greater energy of
the spectrogram, and therefore greater information about the signal.

I Techniques such as synchrosqueezing, reassignment and ridge extraction
have gained prominence in the context of identifying and processing the
maxima of the spectrogram.
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Zeros of the spectrogram

Recently, zeros of spectrograms have gained traction as effective analytical
tools.

This line of investigations originates from seminal work of [Flandrin, 2015].

Patrick Flandrin

I The zeros of the Gabor spectrogram of white noise
exhibit a spatial distribution that is highly uniform on
the time-frequency plane.

I The presence of a nonzero signal creates distortions in
the highly uniform spatial distribution of points.
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Zeros of the spectrogram

I This observation has been utilized for devising empirical approaches to
signal analysis via studying the spectrogram zero set [e.g., Flandrin 2015 ;
Bardenet-Flamant-Chainais 2020].

I The STFT of white noise is connected to the Gaussian Analytic Functions
(abbrv., GAFs).

I The hyperuniformity of the GAF zero sets provides a cogent explanation
for the empirical observation that these zeros have a highly homogeneous
spatial distribution.
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Towards a level sets based approach to signal analysis

I Some difficulties in using spectrogram zeros to understand signals :

• Lack of integrable structure in GAF zeros makes theoretical analysis
difficult ;

• Real coefficients interfere with statistical symmetry properties of GAF zeros ;

• Zeros can be unstable with noise and numerical errors, leading to robustness
issues of the empirical methods.

I We propose to investigate signals via the (upper) level sets Λ(θ) of the
spectrogram X, rather than its zeros or critical points.

Λ(θ) = {(u, v) ∈ R2 : |X(u, v)| > θ}, θ ∈ R+.

I Generalize zero sets to level sets : Λ(0){ is the set of spectrogram zeros.

I Level sets are more robust to noise and numerical perturbations, and
accord a richer mathematical theory.
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Towards a level sets based approach to signal analysis

Lower level sets Λ(θ){ = {(u, v) ∈ R2 : |X(u, v)| ≤ θ} with
increasing level θ.
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The big picture of our work

1. We undertake a comparative investigation of the level sets of the Gabor
spectrogram of Gaussian white noise and those of a signal corrupted by
Gaussian white noise.

2.1 Utilising this analysis as a cornerstone, we establish the theoretical
foundations of a spectrogram level sets based approach to signal analysis :

I a natural hypothesis testing problem to decide between pure white noise
and the presence of a fundamental mode.

I an efficient test of hypothesis for this problem, and provide theoretical
guarantees for its effectiveness.

I an estimation procedure for a fundamental mode if it is present, and
provide error bounds for the accuracy of such estimation.
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The big picture of our work

2.2 Our results also have theoretical implications for spectrogram zero based
approaches, by rigorously demonstrating that the presence of a non-trivial signal
creates zero-free regions for the spectrogram on the time-frequency plane.

3. Motivated by our theoretical analysis, we propose an algorithm for signal
analysis that is intrinsic to the spectrogram data.

I This procedure is able to effectively perform detection and estimation for
linear combinations of fundamental modes.

I The signal estimation turns out to be highly accurate as long as the
fundamental modes being combined are reasonably well separated.
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Short-time Fourier transform

I Short Time Fourier Transforms (abbrv. STFTs) are foundational objects in
time-frequency analysis.

I By introducing a window function in the traditional Fourier transform,
STFTs lead to a two-dimensional representation of a signal on the
time-frequency plane.

I Given a signal f and a window function φ, the STFT is defined as the inner
product between f and shifted φ (in the sense of time and frequency).

Definition

Fix a window function φ ∈ L2(R). The STFT of f ∈ L2(R) w.r.t. φ is

Vφf(u, v) := 〈f,MvTuφ〉 =

∫
R

f(t)φ(t− u)e−2iπtvdt,

where Mvf = e2iπv·f(·) and Tuf = f(· − u). Here 〈·, ·〉 denotes the inner
product in L2(R) w.r.t. the Lebesgue measure.
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Gabor transform

I The squared modulus of the STFT is the spectrogram of the signal.

I STFT with a Gaussian window function is called the Gabor transform.

I The Bargmann transform of f ∈ L2(R) is

Bf(z) = 21/4

∫
R
f(t) exp(2πtz − πt2 − π

2
z2)dt, z ∈ C.

I For f ∈ L2(R), the Gabor transform of f can be computed as

Vgf(u, v) = exp(−πiuv − π

2
|z|2)Bf(z̄), u, v ∈ R,

where z = u+ iv.
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Gabor transform of a noisy fundamental mode

Suppose we consider the generative model where

Observation︸ ︷︷ ︸
Gabor spectrogram :

= Signal strength · Fundamental mode︸ ︷︷ ︸
Peaked structure

+ White noise︸ ︷︷ ︸
Approximately controlled

I We focus our attention on the most fundamental setting for a signal,
namely Hermite functions, which form an orthonormal basis for L2(R) and
is central to Gabor analysis.
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Gabor transform of Hermite functions

I Let {hk} be Hermite functions which form an orthonormal basis of L2(R).

I The Bargmann transform of hk is

Bhk(z) =
πk/2zk√

k!
, k = 0, 1, · · · .

I The Gabor transform of hk is

Vghk(u, v) = exp(−πiuv − π

2
|z|2)

πk/2zk√
k!
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Gabor transform of Hermite functions

I The maximum magnitude of the Gabor transform of hk is

max
u,v∈R

|Vghk(u, v)| =
k∏
t=1

√
k

et
,

where the maximum value is obtained when
√
u2 + v2 =

√
k/π.

I For any u, v ∈ R such that

√
u2 + v2 −

√
k/π√

k/π
= r,

we have

|Vghk(u, v)|
maxu,v∈R |Vghk(u, v)| =

(1 + r)k

ek(r+r2/2)
.
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Gaussian white noise

Definition

(1) Schwartz space S(R) is the function space consisting of rapidly decreasing
smooth functions from R to C.

(2) The space of tempered distributions on R, denoted as S ′(R), is the
continuous dual of S(R).

I Define the action 〈ψ, φ〉 := ψ(φ) for any ψ ∈ S′(R), φ ∈ S(R).

I The STFT of f ∈ S ′(R) w.r.t. a window function φ ∈ S(R) is

Vφf(u, v) := 〈f,MvTuφ〉, u, v ∈ R.

I White noise measure µ1 : unique probability on B(S ′(R)) satisfying

Eµ1

[
ei〈·,φ〉

]
:=

∫
S′(R)

ei〈ξ,φ〉dµ1(ξ) = e
− 1

2
‖φ‖2

L2(R) , φ ∈ S(R),
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Gabor transform of Gaussian white noise

I Let ξ be a random variable with distribution µ1, i.e.,

ξ =

∞∑
k=0

〈ξ, hk〉hk,

where {〈ξ, hk〉} are i.i.d. N (0, 1).

I Let u, v ∈ R and write z = u+ iv ∈ C. Then the Gabor transform of ξ is

Vgξ(u, v) =
√
π exp(iπuv − π

2
|z|2)

∞∑
k=0

〈ξ, hk〉
πk/2zk√

k!
,

where convergence is in L2(µ1).

I The series on R.H.S. is the standard planar Gaussian Analytic Function.

16 / 38



Gabor transform of Gaussian white noise

I Let ξ be a random variable with distribution µ1, i.e.,

ξ =

∞∑
k=0

〈ξ, hk〉hk,

where {〈ξ, hk〉} are i.i.d. N (0, 1).

I Let u, v ∈ R and write z = u+ iv ∈ C. Then the Gabor transform of ξ is

Vgξ(u, v) =
√
π exp(iπuv − π

2
|z|2)

∞∑
k=0

〈ξ, hk〉
πk/2zk√

k!
,

where convergence is in L2(µ1).

I The series on R.H.S. is the standard planar Gaussian Analytic Function.

16 / 38



Gaussian geometry of Gabor spectrograms

I Vgξ, the Gabor transform of Gaussian white noise, is a Gaussian random
field on R2.

I This induces a metric geometry on R2 that fundamentally determines the
statistical behaviour of the Gabor spectrogram.

I The metric is given by

d2((u1, v1), (u2, v2)) :=
{
E
[
|Vgξ(u1, v1)− Vgξ(u2, v2)|2

]}1/2
= 2π

[
1− cos (π(u1 + u2)(v1 − v2)) exp(−π

2
‖(u1, v1)− (u2, v2)‖2)

]
.

I The cosine term is oscillatory, and is related to oscillatory behaviour of the
correlations of the Gaussian field. This is known to create complications in
the stochastic geometry of level sets, e.g. in phase transition phenomena
for level set percolation in Gaussian free fields [Bricmont, Lebowitz,
Rodriguez, Drewitz, Prevost, Sznitman].
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Gabor spectrogram of white noise

In order to identify noisy fundamental modes, we need the “boundedness” of
the Gabor spectrogram of white noise, within a bounded set.

Theorem

For L ≥ π, we have that for any τ > 0,

P

[
sup

(u,v)∈BL

|Vgξ(u, v)| ≤
√

2(14K + τ)
√

logL

]
≥ 1− 4 exp

(
− τ

2

2π
· logL

)
,

where K > 0 is a constant and the parameter set

BL :={(u, v) ∈ R2 : max{|u|, |v|} ≤ L}.

18 / 38



Gabor spectrogram of white noise

In order to identify noisy fundamental modes, we need the “boundedness” of
the Gabor spectrogram of white noise, within a bounded set.

Theorem

For L ≥ π, we have that for any τ > 0,

P

[
sup

(u,v)∈BL

|Vgξ(u, v)| ≤
√

2(14K + τ)
√

logL

]
≥ 1− 4 exp

(
− τ

2

2π
· logL

)
,

where K > 0 is a constant and the parameter set

BL :={(u, v) ∈ R2 : max{|u|, |v|} ≤ L}.

18 / 38



Sketch of the proof

With probability ≥ 1− exp(− ρ2

2π
), we have

sup
(u,v)∈BL

|Vgξ(u, v)| ≤ E

[
sup

(u,v)∈BL

|Vgξ(u, v)|

]
+ ρ (By Borell-TIS inequality)

≤ K
∫ ∞
0

√
log (N(BL, d, ε))dε+ ρ, (By Dudley’s entropy integral)

where N(BL, d, ε) is the smallest number of balls Bd(t, ε) that cover BL.

We use different arguments for different scales :∫ ∞
0

√
log (N(BL, d, ε))dε =

∫ L−2

0

· · ·dε︸ ︷︷ ︸
≤
∫L−2
0

√
log
(
18π3 L4

ε2

)
dε

+

∫ 2
√
π

L−2

· · ·dε︸ ︷︷ ︸
≤2
√
π
√

log(N(BL,d,L
−2))

≤ C
√

logL

I the first equality holds since max{|u1 − u2|, |v1 − v2|} ≤ ε

3
√
2π3L

implies

d((u1, v1), (u2, v2)) ≤ ε when 0 ≤ ε ≤ L−2 ;

I 2
√
π comes from the fact that d2(·, ·) ≤ 4π.
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Spectrogram level sets of a noisy fundamental mode

The spectrogram level set of a signal y, restricted to BL, with threshold γ is

Λ(γ) := {(u, v) ∈ BL : |Vgy(u, v)| ≥ γ}.

Theorem

Assume the signal y is generated as y = λhk + ξ ∈ S(R). Let

|λ| ≥ 5
√

2(14K + τ)
√

logL∏k
t=1

√
k/(et)

,

where τ > 0 is a parameter. Then, for L ≥ max{
√
k/π, π}, we have

∅ 6= Λ
(

3
√

2(14K + τ)
√

logL
)
⊆

{
(u, v) ∈ R2 :

|Vghk(u, v)|∏k
t=1

√
k/(et)

> α

}
,

with prob. ≥ 1− 4 exp
(
− τ2

2π
· logL

)
, where α :=

√
2(14K+τ)

√
logL

|λ|
∏k

t=1

√
k/(et)

∈ (0, 1
5
].

I This makes conducting signal detection via spectrogram level sets possible !
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Generative and observational models

Generative model : The observation y is generated as

y = λhk + ξ,

where

I the signal hk is an Hermite function, 1 ≤ k ≤ k0, where k0 ∈ N is given.

I white noise ξ is a random variable with distribution µ1,

I λ is the signal strength.

Observational model : The level set Λ(θ) at any prescribed level θ may be
observed.

Questions :

I Whether a fundamental mode exists ?

I If exists, which is the fundamental mode ?

I Furthermore, what is the signal strength ?
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Signal detection – A hypothesis testing perspective

We frame the signal detection problem in terms of

a simple versus composite hypothesis testing question.

To be precise, we test the following null vs. alternative hypotheses :

H0 : The observation y = ξ, i.e., there is no signal but only pure noise

vs.

H1 : The observation y = λhk + ξ with λ 6= 0 and some integer k ∈ [0, k0].

A test ψθ is a measurable function of the observed level set Λ(θ) that maps
Λ(θ) to the set {0, 1}, with the understanding :

I the value 0 corresponds to acceptance of H0,

I the value 1 pertains to rejecting the null and accepting the alternative H1.
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Signal detection – A hypothesis testing perspective

Denote

I P0 as the distribution of Λ(θ) under H0

I Pm as the distribution of Λ(θ) under H1 with k = m

We say that we detect the signal at strength λ if, for any δ > 0, there exists a
test ψθ(δ) such that

P0[ψθ(δ) = 1] ∨ max
1≤k≤k0

Pk[ψθ(δ) = 0] ≤ δ.

I Note that the quantities P0[ψθ(δ) = 1] and max1≤k≤k0 Pk[ψθ(δ) = 0]
pertain to the probabilities of Type I and Type II errors in this model.

I We want an algorithm for signal detection when the probabilities of there
two types of errors are less than δ.
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Signal Detection – The test ψθ

Consider tests of the form

ψθ = 1{Λ(θ) is non-empty}.

We provide the theoretical guarantees for the proposed test of hypothesis.

Theorem

Let an error threshold δ > 0 be given. Consider the test ψθ(δ) by setting

θ(δ) = 3
√

2
(

14K
√

logL+
√

2π · log(4/δ)
)
.

Then for L≥max{
√
k0/π, π},ψθ(δ) performs signal detection with error

threshold δ at signal strength

|λ| ≥ 5
√

2 M(k0)−1
(

14K
√

logL+
√

2π · log(4/δ)
)
.

Here,

M(k0) := min
1≤k≤k0

k∏
t=1

√
k/(et).
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Signal estimation

I Once we know that a fundamental mode exists, we need an estimation
procedure.

I We demonstrate that signal estimation is possible with high probability, as
the observation size L→∞.

Definition

Define the following statistics :

I θ̂ := max{θ : Λ(θ) 6= ∅} ;

I k̂ := [[π · (min{|z|2 : z ∈ Λ(θ̂)})]], where [[x]] denotes the nearest integer
to x ∈ R ;

I λ̂ := θ̂/
∏k̂
t=1

√
k̂/(et).
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Signal estimation – Mode

Theorem

Given parameter τ > 0, for L ≥ max{
√
k0/π, π}, and signal strength

|λ| ≥ tmode(τ) := 5C(k0)
√

2(14K + τ)M(k0)−1
√

logL,

we have

inf
1≤k≤k0

Pk[k̂ = k] ≥ 1− 4 exp

(
− τ

2

2π
· logL

)
.

I This theorem provides an error bound for the accuracy of the mode
obtained by our estimation in terms of the quantity of data available.
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Signal estimation – Signal strength

I In addition to the error bound for the estimated mode, we also provide an
estimation theorem for signal strength.

I Our estimation procedure gives a rigorous estimation rate of signal
strength.

Theorem

Given parameter 1 ≥ δ > 0, for L > max{
√
k0/π, π, exp(14K/δ)2}, and signal

strength
|λ| ≥ tstrength := 5C(k0)

√
2 M(k0)−1 logL,

we have

inf
1≤k≤k0

Pk
[∣∣∣ λ̂|λ| − 1

∣∣∣ ≤ δ] ≥ 1− 4 exp

(
−δ

2 log2 L

2π
·
(

1− 14K

δ
√

logL

)2)
.
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Algorithm for signal detection and estimation

Step 1. Compute the Gabor spectrogram Vgy(u, v) of a given signal y w.r.t.
the Gaussian window function g ;

Step 2. Given L > 0 large enough, compute

mL := max
(u,v)∈BL

|Vgy(u, v)|;

Step 3. Compute the spectrogram level set

Λ(0.2mL) = {(u, v) ∈ BL | |Vgy(u, v)| ≥ 0.2mL}

Step 4. Detect whether these exists a ring in Λ(0.2mL) centered at the origin.

4.1 If so, we say that there exists a fundamental mode.

4.2 Moreover, suppose the average of the radii of the large circle and the
smaller one is η, the unknown index k could be estimated as bπη2c, where
bxc denotes the greatest integer less than or equal to x ;
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Algorithm for signal detection and estimation

I A key feature of the algorithm is that its operation is intrinsic to the
spectrogram data.

I In particular, it does not depend on the prior knowledge of additional
information (e.g., while making the choice of threshold for the level sets).

I Note that we only care about the level set itself, not the values of the
spectrograms in this area.

I As a side note, the procedure in the algorithm could be extended to learn
linear combinations of fundamental modes as long as the signals being
combined are reasonably well separated.
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Modified accuracy

I In order to measure the performance of our algorithm for learning linear
combinations of fundamental modes

∑m
i=1 λihki corrupted with noise,

where 1 ≤ ki ≤ k0, we need to provide a reasonable metric.

I Define the modified accuracy (mACC) of the estimation {k̂j}m̂j=1 as

mACC=


0, if m̂ 6=m

max

{
0, 1−

m∑
i=1

∣∣∣∣∣k̂iki −1

∣∣∣∣∣
}

if m̂=m, maxi|k̂i−ki|≤1,

0, if m̂=m, maxi|k̂i−ki|>1.

I By definition, we can see that mACC = 1 means the perfect estimation,
and mACC = 0 represents the worst.
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One fundamental mode

Consider the generative model

y = λhk + σξ,

where

I the integer k is uniformly generated from {1, 2, · · · , 112} ;

I the signal strength λ is uniformly generated in [1, 2] ;

I the noise strength σ = 1
10
√
logL

.

Set the observation radius L = 8.

Define the spectrogram level set of the data y with threshold 0.2mL as

Λ(0.2mL) = {(u, v) ∈ BL | |Vgy(u, v)| ≥ γmL} ,

where mL := max(u,v)∈BL
|Vgy(u, v)|.
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Empirical result – One fundamental mode

Gabor spectrogram
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Fig. Gabor spectrogram and spectrogram level set of one fundamental mode corrupted by noise
with k = 10.
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Fig. Gabor spectrogram and spectrogram level set of one fundamental mode corrupted by noise
with k = 100.

I It is promising to detect the fundamental mode through the ring in the
spectrogram level set.

I Level sets at 20% of maximum lead to signal estimation of one
fundamental mode with accuracy > 99%.
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Two or more fundamental modes

We test the generative model

y =
m∑
i=1

λihki + σξ,

where the integers ki’s are uniformly generated from {1, 2, · · · , 112} such that
each ki are well separated as :√

ki
π
/∈ [

√
kj
π
− w,

√
kj
π

+ w], 1 ≤ i 6= j ≤ m.

Here w > 0 is a preset parameter.
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Empirical result – Two or more fundamental modes

Gabor spectrogram
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Fig. Gabor spectrogram and spectrogram level set of linear combination of fundamental modes
corrupted by noise with k1 = 8, k2 = 90.
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Empirical result – Two or more fundamental modes

Gabor spectrogram
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Fig. Gabor spectrogram and spectrogram level set of linear combination of fundamental modes
corrupted by noise with k1 = 10, k2 = 40, k3 = 95.
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Empirical result – Two or more fundamental modes

Table – Empirical performance of our algorithm for learning the linear combination of
fundamental modes over 10000 trials with different parameters.

Number of modes (m) The parameter w Average modified accuracy

2 1.5 94.96%

2 2 99.85%

3 1.5 91.93%

3 2 97.11%

I When w = 2, our algorithm gives more accurate estimation due to the fact
that in this case, the fundamental modes are more separated.

I Overall, our algorithm is quite effective for learning linear combinations of
fundamental modes as long as these modes are reasonably well separated.
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Conclusion

I We have investigated signal analysis via an examination of the stochastic
geometric properties of spectrogram level sets.

I We have obtained rigorous theorems demonstrating the effectiveness of a
spectrogram level sets based approach to the detection and estimation of
signals, and further proposed a level sets based algorithm for signal
analysis that is intrinsic to given spectrogram data.

I We hope that the present work will serve as a prototype and provide a
roadmap for similar investigations with regard to broader classes of signals.

Reference :

S. Ghosh, M. Lin, and D. Sun. “Signal analysis via the stochastic geometry of

spectrogram level sets.” IEEE Transactions on Signal Processing 70 (2022) :

1104-1117.

Thank you for your attention !
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