Distribution of zeros of the spectrogram of noisy signals

Arnaud Poinas in collaboration with Rémi Bardenet

9th June 2022

Outline

1 Zeros of the spectrogram of complex white noise

- Intensity of zeros of the spectrogram of a noisy signal
- Behaviour of zeros in the presence of specific signals
 - Hermite functions
 - Linear chirps
 - Pairs of parallel linear chirps

The short time Fourier transform (STFT) of a signal $x : \mathbb{R} \to \mathbb{C}$ with Gaussian window

$$g(t) = rac{1}{2^{1/4}} e^{-\pi t^2}$$

is defined by

$$STFT(x)(\tau,\omega) := \int_{\mathbb{R}} x(t) e^{-\pi(t-\tau)^2} e^{-2i\pi\omega t} \mathrm{d}t.$$

Definition

The spectrogram of a signal $x : \mathbb{R} \to \mathbb{C}$ is defined by

 $\forall z = \tau + i\omega \in \mathbb{C}, \quad Spec(x)(z) := |STFT(x)(\tau, \omega)|^2.$

The STFT can be rewritten as

$$STFT(x)(au,\omega)=e^{-\pirac{ au^2+\omega^2}{2}}B(x)(au-i\omega)\Rightarrow Spec(x)(z)=e^{-\pi|z|^2}|B(x)(ar{z})|^2$$

where B(x) is the Bargmann transform defined by

$$B(x)(z) := 2^{1/4} \int_{\mathbb{R}} x(t) e^{2\pi t z - \pi t^2 - \pi z^2/2} dt.$$

Let $\xi : \mathbb{R} \to \mathbb{C}$ be the standard complex white noise defined by

$$\xi(t)=\sum_{k\geqslant 0}a_kh_k(t)$$

where $(a_k)_{k \in \mathbb{N}}$ is a sequence of i.i.d. $\mathcal{N}_{\mathbb{C}}(0, Id)$ random variables and h_k is the k-th Hermite function.

Since $(h_k)_{k \in \mathbb{N}}$ is an orthonormal basis of $L^2(\mathbb{R})$ then:

- $\forall t \in \mathbb{R}, \ \xi(t) \sim \mathcal{N}_{\mathbb{C}}(0, Id).$
- $\forall t, t' \in \mathbb{R}$ with $t \neq t'$, $\xi(t) \perp \!\!\!\perp \xi(t')$.

Let h_k be the k-th Hermite function. Then,

$$B(h_k)(z) = \frac{\pi^{k/2} z^k}{\sqrt{k!}}$$

The spectrogram of ξ writes

$$Spec(\xi)(z) = e^{-\pi |z|^2} |F(\bar{z})|^2$$
, where $F(z) := \sum_{k \ge 0} a_k \frac{\pi^{k/2} z^k}{\sqrt{k!}}, \ z \in \mathbb{C}.$

F is the planar Gaussian analytic function with covariance kernel

$$\mathcal{K}(z,w) = \mathbb{E}[F(z)\overline{F(w)}] = \sum_{j,k \ge 0} \mathbb{E}[a_j a_k] \frac{\pi^{(z+k)/2} z^j \bar{w}^k}{\sqrt{j!k!}} = \sum_{j,k \ge 0} \frac{(z\bar{w})^k}{k!} = e^{\pi z\bar{w}}$$

Spectrogram of complex white noise

Spectrogram of complex white noise

Let X be a point process. We define its intensity function $\rho : \mathbb{C} \to \mathbb{R}_+$ by

 $\rho(z)dz = \mathbb{P}(X \text{ has a point in a ball centered in } z \text{ with volume } dz)$

Let X be a point process. We define its intensity function $\rho : \mathbb{C} \to \mathbb{R}_+$ by $\rho(z)dz = \mathbb{P}(X \text{ has a point in a ball centered in } z \text{ with volume } dz)$

If X is the point process of zeros of the spectrogram of white noise then

- X is stationary;
- X is isotropic;
- $\forall z \in \mathbb{C}, \ \rho(z) = 1;$
- X is NOT a DPP.

Let X be a point process. We define its intensity function $\rho : \mathbb{C} \to \mathbb{R}_+$ by $\rho(z)dz = \mathbb{P}(X \text{ has a point in a ball centered in } z \text{ with volume } dz)$

If X is the point process of zeros of the spectrogram of a noisy signal then

- X is stationary;
- X is isotropic;
- $\forall z \in \mathbb{C}, \ \rho(z) = 1.$
- X is (probably) NOT a DPP.

Let X be a point process. We define its intensity function $\rho: \mathbb{C} \to \mathbb{R}_+$ by

 $\rho(z)dz = \mathbb{P}(X \text{ has a point in a ball centered in } z \text{ with volume } dz)$

If X is the point process of zeros of the spectrogram of a noisy signal then

- X is stationary;
- X is isotropic;
- $\forall z \in \mathbb{C}, \ \rho(z) = 1.$
- X is (probably) NOT a DPP.

Main problem: What are the properties of the zeros of the spectrogram of a noisy signal?

Outline

D Zeros of the spectrogram of complex white noise

Intensity of zeros of the spectrogram of a noisy signal

3 Behaviour of zeros in the presence of specific signals

- Hermite functions
- Linear chirps
- Pairs of parallel linear chirps

4 Some open problems and conclusion

Theorem $(^1)$

The intensity $\rho(z)$ of the point process of zeros of $Spec(x + \xi)(z)$ satisfies

$$ho(z) = \left(1 + Spec(x)(z) + rac{\Delta Spec(x)(z)}{4\pi}
ight) \exp\left(-Spec(x)(z)
ight)$$

¹Formula appears in a different form in: *Luis Alberto Escudero, Naomi Feldheim, Günther Koliander, José-Luis Romero.* Efficient computation of the zeros of the Bargmann transform under additive white noise. (2021)

Theorem $(^1)$

The intensity $\rho(z)$ of the point process of zeros of $Spec(x + \xi)(z)$ satisfies

$$\rho(z) = \left(1 + Spec(x)(z) + \frac{\Delta Spec(x)(z)}{4\pi}\right) \exp\left(-Spec(x)(z)\right)$$

Attempt of interpretation:

• $(1 + Spec(x)(z)) \exp(-Spec(x)(z))$ decreasing function of $Spec(x)(z) \implies$ zeros avoid locations where Spec(x)(z) has a high value.

¹Formula appears in a different form in: *Luis Alberto Escudero, Naomi Feldheim, Günther Koliander, José-Luis Romero.* Efficient computation of the zeros of the Bargmann transform under additive white noise. (2021)

Theorem (1)

The intensity $\rho(z)$ of the point process of zeros of $Spec(x + \xi)(z)$ satisfies

$$\rho(z) = \left(1 + Spec(x)(z) + \frac{\Delta Spec(x)(z)}{4\pi}\right) \exp\left(-Spec(x)(z)\right)$$

Attempt of interpretation:

- $(1 + Spec(x)(z)) \exp(-Spec(x)(z))$ decreasing function of $Spec(x)(z) \implies$ zeros avoid locations where Spec(x)(z) has a high value.
- $\frac{\Delta Spec(x)(z)}{4\pi} \exp\left(-Spec(x)(z)\right) \Longrightarrow$ zeros prefers locations where Spec(x)(z) has large variations.

¹Formula appears in a different form in: *Luis Alberto Escudero, Naomi Feldheim, Günther Koliander, José-Luis Romero.* Efficient computation of the zeros of the Bargmann transform under additive white noise. (2021)

The spectrogram of a noisy signal $x + \xi$ writes

$$Spec(x + \xi)(z) = e^{-\pi |z|^2} |B(x + \xi)(\bar{z})|^2 = e^{-\pi |z|^2} |F(\bar{z}) + B(x)(\bar{z})|^2.$$

Let $\rho(z)$ be the intensity function of zeros of the Gaussian field $F(\bar{z}) + B(x)(\bar{z})$.

The spectrogram of a noisy signal $x + \xi$ writes

$$Spec(x + \xi)(z) = e^{-\pi |z|^2} |B(x + \xi)(\bar{z})|^2 = e^{-\pi |z|^2} |F(\bar{z}) + B(x)(\bar{z})|^2.$$

Let $\rho(\overline{z})$ be the intensity function of zeros of the Gaussian field F(z) + B(x)(z).

The spectrogram of a noisy signal $x + \xi$ writes

$$Spec(x + \xi)(z) = e^{-\pi |z|^2} |B(x + \xi)(\bar{z})|^2 = e^{-\pi |z|^2} |F(\bar{z}) + B(x)(\bar{z})|^2$$

Let $\rho(\bar{z})$ be the intensity function of zeros of the Gaussian field F(z) + B(x)(z).

Kac-Rice formula:

$$\rho(\bar{z}) = \mathbb{E} \left[\det \begin{pmatrix} \partial_z (F(z) + B(x)(z)) & \partial_z \overline{(F(z) + B(x)(z))} \\ \partial_{\bar{z}} (F(z) + B(x)(z)) & \partial_{\bar{z}} \overline{(F(z) + B(x)(z))} \end{pmatrix} \middle| F(z) + B(x)(z) = 0 \right] \\ \times \rho_{F(z) + B(x)(z)}(0)$$

The spectrogram of a noisy signal $x + \xi$ writes

$$Spec(x + \xi)(z) = e^{-\pi |z|^2} |B(x + \xi)(\bar{z})|^2 = e^{-\pi |z|^2} |F(\bar{z}) + B(x)(\bar{z})|^2$$

Let $\rho(\bar{z})$ be the intensity function of zeros of the Gaussian field F(z) + B(x)(z).

Kac-Rice formula:

$$\rho(\bar{z}) = \mathbb{E} \left[\det \begin{pmatrix} \partial_z (F(z) + B(x)(z)) & \partial_z \overline{(F(z) + B(x)(z))} \\ \partial_{\bar{z}} (F(z) + B(x)(z)) & \partial_{\bar{z}} \overline{(F(z) + B(x)(z))} \end{pmatrix} \middle| F(z) + B(x)(z) = 0 \right] \\ \times \rho_{F(z) + B(x)(z)}(0)$$

 $\Rightarrow \rho(\bar{z}) = \mathbb{E}\left[\left| \partial_z (F(z) + B(x)(z)) \right|^2 \right| F(z) + B(x)(z) = 0 \right] p_{F(z)}(-B(x)(z))$

$$F(z) \sim \mathcal{N}_{\mathbb{C}}(0, e^{\pi |z|^2}) \; \Rightarrow \; p_{F(z)}(-B(x)(z)) = rac{\exp\left(-e^{-\pi |z|^2}|B(x)(z)|^2
ight)}{\pi e^{\pi |z|^2}},$$

$$F(z) \sim \mathcal{N}_{\mathbb{C}}(0, e^{\pi |z|^2}) \; \Rightarrow \; p_{F(z)}(-B(x)(z)) = rac{\exp\left(-e^{-\pi |z|^2}|B(x)(z)|^2
ight)}{\pi e^{\pi |z|^2}},$$

hence

$$\rho(\bar{z}) = \mathbb{E}\left[\left| \partial_z (F(z) + B(x)(z)) \right|^2 \right| F(z) + B(x)(z) = 0 \right]$$
$$\times \frac{\exp\left(-e^{-\pi |z|^2} |B(x)(z)|^2 \right)}{\pi e^{\pi |z|^2}}$$

$$F(z) \sim \mathcal{N}_{\mathbb{C}}(0, e^{\pi |z|^2}) \; \Rightarrow \; p_{F(z)}(-B(x)(z)) = rac{\exp\left(-e^{-\pi |z|^2}|B(x)(z)|^2
ight)}{\pi e^{\pi |z|^2}},$$

hence

$$\rho(\bar{z}) = \mathbb{E}\left[|\nabla'_{z}(F(z) + B(x)(z))|^{2} \middle| F(z) + B(x)(z) = 0 \right] \\ \times \frac{\exp\left(-e^{-\pi|z|^{2}}|B(x)(z)|^{2}\right)}{\pi e^{\pi|z|^{2}}}$$

where $\nabla'_z = \partial_z - \pi \bar{z}$.

Note that

$$\mathbb{E}\left[\nabla'_{z}F(z)\overline{F(w)}\right] = \nabla'_{z}K(z,w) = \nabla'_{z}(e^{\pi z\bar{w}}) = \pi(\bar{\omega}-\bar{z})e^{\pi z\bar{w}},$$

hence

$$\mathbb{E}\left[
abla_{z}'F(z)\overline{F(z)}
ight] = 0 \Rightarrow F(z) \text{ and }
abla_{z}'F(z) \text{ are independent.}$$

Note that

$$\mathbb{E}\left[\nabla_z'F(z)\overline{F(w)}\right] = \nabla_z'K(z,w) = \nabla_z'(e^{\pi z \bar{w}}) = \pi(\bar{\omega} - \bar{z})e^{\pi z \bar{w}},$$

hence

$$\mathbb{E}\left[
abla_z'F(z)\overline{F(z)}
ight] = 0 \ \Rightarrow \ F(z) ext{ and }
abla_z'F(z) ext{ are independent.}$$

Thus,

$$\rho(\bar{z}) = \mathbb{E}\Big[|\nabla'_{z}(F(z) + B(x)(z))|^{2}\Big] \frac{\exp\left(-e^{-\pi|z|^{2}}|B(x)(z)|^{2}\right)}{\pi e^{\pi|z|^{2}}}$$

Note that

$$\mathbb{E}\left[\nabla_z'F(z)\overline{F(w)}\right] = \nabla_z'K(z,w) = \nabla_z'(e^{\pi z \bar{w}}) = \pi(\bar{\omega} - \bar{z})e^{\pi z \bar{w}},$$

hence

$$\mathbb{E}\left[\nabla_z' F(z)\overline{F(z)}\right] = 0 \ \Rightarrow \ F(z) \text{ and } \nabla_z' F(z) \text{ are independent.}$$

Thus,

$$\rho(\bar{z}) = \left(\mathbb{E}[|\nabla'_{z}F(z)|^{2}] + |\nabla'_{z}B(x)(z)|^{2}\right) \frac{\exp\left(-e^{-\pi|z|^{2}}|B(x)(z)|^{2}\right)}{\pi e^{\pi|z|^{2}}}$$

Finally,

$$\mathbb{E}[\nabla'_{z}F(z)\overline{\nabla'_{\omega}F(w)}] = \nabla'_{z}\nabla'_{\bar{\omega}}(e^{\pi z \bar{w}}) = \pi(1+\pi|z-w|^{2})e^{\pi z \bar{\omega}}$$

hence

$$\mathbb{E}[|\nabla'_z F(z)|^2] = \pi e^{\pi |z|^2}.$$

Finally,

$$\mathbb{E}[\nabla_z'F(z)\overline{\nabla_{\omega}'F(w)}] = \nabla_z'\nabla_{\bar{\omega}}'(e^{\pi z\bar{w}}) = \pi(1+\pi|z-w|^2)e^{\pi z\bar{\omega}}$$

hence

$$\mathbb{E}[|\nabla'_z F(z)|^2] = \pi e^{\pi |z|^2}.$$

Finally,

$$\rho(\bar{z}) = (\pi e^{\pi |z|^2} + |\nabla'_z B(x)(z)|^2) \frac{\exp\left(-e^{-\pi |z|^2} |B(x)(z)|^2\right)}{\pi e^{\pi |z|^2}}$$

Finally,

$$\mathbb{E}[\nabla'_{z}F(z)\overline{\nabla'_{\omega}F(w)}] = \nabla'_{z}\nabla'_{\bar{\omega}}(e^{\pi z\bar{w}}) = \pi(1+\pi|z-w|^{2})e^{\pi z\bar{\omega}}$$

hence

$$\mathbb{E}[|\nabla'_z F(z)|^2] = \pi e^{\pi |z|^2}.$$

Finally,

$$\rho(\bar{z}) = (\pi e^{\pi |z|^2} + |\nabla'_z B(x)(z)|^2) \frac{\exp\left(-e^{-\pi |z|^2} |B(x)(z)|^2\right)}{\pi e^{\pi |z|^2}}$$

$$\implies \rho(z) = \left(1 + \frac{|\nabla'_{\bar{z}}B(x)(\bar{z})|^2}{\pi e^{\pi|z|^2}}\right) \exp\left(-e^{-\pi|z|^2}|B(x)(\bar{z})|^2\right)$$

$$\rho(z) = \left(1 + \frac{|\nabla_{\bar{z}}' B(x)(\bar{z})|^2}{\pi e^{\pi |z|^2}}\right) \exp\left(-e^{-\pi |z|^2} |B(x)(\bar{z})|^2\right)$$

$$\rho(z) = \left(1 + \frac{|\nabla_{\bar{z}}' B(x)(\bar{z})|^2}{\pi e^{\pi |z|^2}}\right) \exp\left(-e^{-\pi |z|^2} |B(x)(\bar{z})|^2\right)$$

•
$$Spec(x)(z) = e^{-\pi |z|^2} |B(x)(\bar{z})|^2$$

$$\rho(z) = \left(1 + \frac{|\nabla'_{\bar{z}}B(x)(\bar{z})|^2}{\pi e^{\pi|z|^2}}\right) \exp\left(-Spec(x)(z)\right)$$

•
$$Spec(x)(z) = e^{-\pi |z|^2} |B(x)(\bar{z})|^2$$

$$\rho(z) = \left(1 + \frac{|\nabla'_{\bar{z}}B(x)(\bar{z})|^2}{\pi e^{\pi|z|^2}}\right) \exp\left(-Spec(x)(z)\right)$$

•
$$Spec(x)(z) = e^{-\pi |z|^2} |B(x)(\bar{z})|^2$$

• $\Delta Spec(x)(z) = 4 \frac{|\nabla'_{\bar{z}}(B(x)(\bar{z}))|^2}{e^{\pi |z|^2}} - 4\pi Spec(x)(z)$

$$\rho(z) = \left(1 + Spec(x)(z) + \frac{\Delta Spec(x)(z)}{4\pi}\right) \exp\left(-Spec(x)(z)\right)$$

•
$$Spec(x)(z) = e^{-\pi |z|^2} |B(x)(\bar{z})|^2$$

• $\Delta Spec(x)(z) = 4 \frac{|\nabla'_{\bar{z}}(B(x)(\bar{z}))|^2}{e^{\pi |z|^2}} - 4\pi Spec(x)(z)$

Theorem

$$ho(z) = \left(1 + Spec(x)(z) + \frac{\Delta Spec(x)(z)}{4\pi}
ight) \exp\left(-Spec(x)(z)
ight)$$

Spec(x)(z)	$\Delta Spec(x)(z)$	$\rho(z)$

Zeros of spectrogram of noisy signals

Theorem

$$\rho(z) = \left(1 + Spec(x)(z) + \frac{\Delta Spec(x)(z)}{4\pi}\right) \exp\left(-Spec(x)(z)\right)$$

Spec(x)(z)	$\Delta Spec(x)(z)$	$\rho(z)$
pprox 0	pprox 0	1

Zeros of spectrogram of noisy signals

Theorem

$$\rho(z) = \left(1 + Spec(x)(z) + \frac{\Delta Spec(x)(z)}{4\pi}\right) \exp\left(-Spec(x)(z)\right)$$

Spec(x)(z)	$\Delta Spec(x)(z)$	$\rho(z)$
pprox 0	pprox 0	1
≫ 0	Any	≈ 0

Theorem

$$ho(z) = \left(1 + Spec(x)(z) + \frac{\Delta Spec(x)(z)}{4\pi}
ight) \exp\left(-Spec(x)(z)
ight)$$

Spec(x)(z)	$\Delta Spec(x)(z)$	$\rho(z)$
pprox 0	pprox 0	1
≫ 0	Any	≈ 0
pprox 0	> 0	>1

Outline

D Zeros of the spectrogram of complex white noise

2 Intensity of zeros of the spectrogram of a noisy signal

Behaviour of zeros in the presence of specific signals
 Hermite functions

- Linear chirps
- Pairs of parallel linear chirps

4 Some open problems and conclusion

Let h_k be the k-th Hermite function ($k \in \mathbb{N} \setminus \{0\}$). The spectrogram of h_k satisfies

$$\operatorname{Spec}(h_k)(z) = \frac{\pi^k |z|^{2k}}{k!} e^{-\pi |z|^2}.$$

Let h_k be the k-th Hermite function ($k \in \mathbb{N} \setminus \{0\}$). The spectrogram of h_k only depends on $r = \pi |z|^2$ and satisfies

$$\operatorname{Spec}(h_k)(r) = rac{r^k}{k!}e^{-r}.$$

Arnaud Poinas

Let $\gamma \in \mathbb{R}_+$. The intensity of zeros $\rho(z)$ of $\operatorname{Spec}(\xi + \sqrt{\gamma}h_k)$ only depends on $r = \pi |z|^2$ and is equal to

$$\rho(r) = \left(1 + \gamma \frac{r^{k-1}}{k!} \left(k - r\right)^2 e^{-r}\right) \exp\left(-\gamma \frac{r^k}{k!} e^{-r}\right)$$

Figure: Left: Spectrogram of a noisy hermite function for $\gamma = 1000$ and k = 10. Zeros are shown in white. Right: Heatmap of $\rho(z)$. The zeros of the figure on the left are shown in purple.

Figure: Blue: $Spec(\sqrt{1000}h_{10})(z)$ with respect to $r = \pi |z|^2$. Red: Density of zeros of $Spec(\xi + \sqrt{1000}h_{10})(z)$ with respect to $r = \pi |z|^2$.

Let $k \in \mathbb{N} \setminus \{0\}$. Let N(B(0, R)) be the number of zeros of $Spec(\xi + \sqrt{\gamma}h_k)$ in a centered ball of radius R. Then,

$$\mathbb{E}[N(B(0,R))] = k - (k - \pi R^2) \exp\left(-\gamma \frac{\pi^k R^{2k}}{k!} e^{-\pi R^2}\right)$$

An interesting consequence is that the average number of zeros in $B\left(0, \sqrt{\frac{k}{\pi}}\right)$ is equal to k and does not depends on γ .

Figure: $Spec(\xi + \sqrt{\gamma}h_{10})$ and $\rho(z)$ for various values of γ . The red line show the ball with radius $\sqrt{10/\pi}$. Zeros inside the ball are shown in red.

Theorem (Rouché's theorem)

Let C be a closed, simple curve of \mathbb{C} . Let f and g be holomorphic functions on the interior of C. If

$$\forall z \in C, |f(z) - g(z)| < |f(z)|,$$

then f and g have the same number of zeros in the interior of C, where each zero is counted as many times as its multiplicity.

Theorem (Rouché's theorem)

Let C be a closed, simple curve of \mathbb{C} . Let f and g be holomorphic functions on the interior of C. If

$$\forall z \in C, |f(z) - g(z)| < |f(z)|,$$

then f and g have the same number of zeros in the interior of C, where each zero is counted as many times as its multiplicity.

Applying this result to f(z) = B(x)(z) and g(z) = F(z) + B(x)(z) yields

Corollary (The trapping of zeros)

Let C be a closed, simple curve of \mathbb{C} and let $x : \mathbb{R} \to \mathbb{C}$. If

$$\forall z \in C$$
, $\operatorname{Spec}(\xi)(z) < \operatorname{Spec}(x)(z)$,

then $\operatorname{Spec}(\xi + x)(z)$ and $B(x)(\overline{z})$ have the same number of zeros in the interior of *C*, where each zero is counted as many times as its multiplicity.

Recall that $B(h_k)(z) = \frac{\pi^{k/2} z^k}{k!} \Rightarrow 0$ is a zero with multiplicity k.

Recall that $B(h_k)(z) = \frac{\pi^{k/2}z^k}{k!} \Rightarrow 0$ is a zero with multiplicity k.

Proposition

Let $k \in \mathbb{N}$ and $\varepsilon > 0$. Let N(B(0, R)) be the number of zeros of $Spec(\xi + \sqrt{\gamma}h_k)$ in a centered ball of radius R. If $\gamma > e^{-k}$ and

$$\gamma > \frac{k!}{k^k} \left(-\log(\varepsilon) + \frac{k}{2} + \log\left(2\sqrt{k+k^2} + \frac{1}{\sqrt{\pi}}\right) \right)$$

then

$$\mathbb{P}\left(N\left(B\left(0,\sqrt{k/\pi}\right)\right)=k\right)\geqslant 1-\varepsilon.$$

Recall that $B(h_k)(z) = \frac{\pi^{k/2}z^k}{k!} \Rightarrow 0$ is a zero with multiplicity k.

Proposition

Let $k \in \mathbb{N}$ and $\varepsilon > 0$. Let N(B(0, R)) be the number of zeros of $Spec(\xi + \sqrt{\gamma}h_k)$ in a centered ball of radius R. If $\gamma > e^{-k}$ and

$$\gamma > \frac{k!}{k^k} \left(-\log(\varepsilon) + \frac{k}{2} + \log\left(2\sqrt{k+k^2} + \frac{1}{\sqrt{\pi}}\right) \right)$$

then

$$\mathbb{P}\left(N\left(B\left(0,\sqrt{k/\pi}\right)\right)=k\right) \geqslant 1-\varepsilon.$$

In other words,

$$\mathbb{P}\left(N\left(B\left(0,\sqrt{k/\pi}\right)\right)=k\right)=1-O(e^{-\gamma}).$$

Outline

D Zeros of the spectrogram of complex white noise

2 Intensity of zeros of the spectrogram of a noisy signal

Behaviour of zeros in the presence of specific signals
 Hermite functions

Linear chirps

• Pairs of parallel linear chirps

4 Some open problems and conclusion

We consider a linear chirp $x(t) := e^{2i\pi t(a+bt)}$.

Proposition

ŀ

For all
$$z = \tau + i\omega \in \mathbb{C}$$
,
 $Spec(x)(z) = \sigma_b e^{-\pi \sigma_b^2 (\omega - (a+b\tau))^2}$, where $\sigma_b := \sqrt{\frac{2}{1+4b^2}}$.

Figure: Left: Plot of a linear chirp. Right: Spectrogram of $x(t) = e^{2i\pi t(-5+0.4t)}$. The line y = -5 + 0.8x is shown in red.

We consider a linear chirp $x(t) := e^{2i\pi t(a+bt)}$.

Proposition

For all
$$z = \tau + i\omega \in \mathbb{C}$$
, $Spec(x)(r)$ only depends on
 $r := \frac{\sigma_b}{\sqrt{2}}(\omega - (a + 2b\tau))$, the distance between z and the line $y = a + 2bx$,
and
 $Spec(x)(r) = \sigma_b e^{-\pi\sigma_b^2 r^2}$, where $\sigma_b := \sqrt{\frac{2}{1 + 4b^2}}$.

Figure: Left: Plot of a linear chirp. Right: Spectrogram of $x(t) = e^{2i\pi t(-5+0.4t)}$. The line y = -5 + 0.8x is shown in red.

Arnaud Poinas

The density
$$\rho(z)$$
 of zeros of $\operatorname{Spec}(\xi + \sqrt{\gamma}x)(z)$ only depends on $r := \frac{\sigma_b}{\sqrt{2}}(\omega - (a + 2b\tau))$ and is equal to $\rho(r) = \left(1 + 4\pi\gamma\sigma_b r^2 e^{-2\pi r^2}\right) \exp\left(-\gamma\sigma_b e^{-2\pi r^2}\right)$, where $\sigma_b := \sqrt{\frac{2}{1 + 4b^2}}$.

Figure: Left: Spectrogram of a noisy chirp for $\gamma = 1000$, a = -5 and b = 0.4. Zeros are shown in white. Right: Heatmap of $\rho(z)$. The zeros of the figure on the left are shown in purple.

Figure: Blue: Spectrogram of the chirp with respect to the distance with the central axis. Red: Density of zeros of the noisy chirp with respect to the distance with the central axis.

Let $R \in \mathbb{R}_+$. Consider the rectangle

$$B = \left\{ z = \tau + i\omega \in \mathbb{C} : r \in [0, R], \frac{\sigma_b}{\sqrt{2}}(\tau + 2b\omega) \in [0, 1] \right\}.$$

Proposition

Let N(B) be the number of zeros of $\text{Spec}(\xi + \sqrt{\gamma}x)$ in B. Then,

$$\mathbb{E}[N(B)] = R \exp\left(-\gamma \sigma_b e^{-2\pi R^2}\right)$$

Outline

D Zeros of the spectrogram of complex white noise

2 Intensity of zeros of the spectrogram of a noisy signal

Behaviour of zeros in the presence of specific signals

- Hermite functions
- Linear chirps
- Pairs of parallel linear chirps

4 Some open problems and conclusion

In this section, we consider two parallel linear chirps:

$$x(t) = \sqrt{\gamma_1} e^{2i\pi t(a_1+bt)} + \sqrt{\gamma_2} e^{2i\pi t(a_2+bt)}$$

Proposition

Let $z = \tau + i\omega \in \mathbb{C}$ and define

$$\left\{ egin{array}{l} r:=rac{\sigma_b}{\sqrt{2}}(\omega-2b au-a_1);\ a:=rac{\sigma_b}{\sqrt{2}}(a_2-a_1);\ s:=rac{\sigma_b}{\sqrt{2}}(au+2b\omega-(a_1+a_2)b); \end{array}
ight.$$

Then, Spec(x)(z), written as a function of r and s is equal to

$$Spec(x)(r,s) = \sigma_b \left(\gamma_1 e^{-2\pi r^2} + \gamma_2 e^{-2\pi (r-a)^2} + 2\sqrt{\gamma_1 \gamma_2} e^{-\pi r^2 - \pi (r-a)^2} \cos(2\pi as) \right).$$

Figure: Spectrogram of two chirps with $\gamma_1 = 10$, $\gamma_2 = 30$, b = 1/2, $a_1 = 0$ and a_2 being either 1 (left figure) or 2 (right figure).

The spectrogram of the superposition of chirps vanish at some points.

Proposition

Spec(x)(r,s) = 0 if and only if

$$r = \frac{a}{2} - \frac{\log(\gamma_2) - \log(\gamma_1)}{4a\pi}$$
 and $\exists k \in \mathbb{Z} \text{ s.t. } s = \frac{1 + 2k}{2a}$

Recall that we consider two parallel linear chirps:

$$\mathbf{x}(t) = \sqrt{\gamma_1} e^{2i\pi t(\mathbf{a}_1 + bt)} + \sqrt{\gamma_2} e^{2i\pi t(\mathbf{a}_2 + bt)}.$$

Proposition

The density $\rho(z)$ of the zeros of Spec $(\xi + x)$ can be expressed as a function of r and s by

$$\rho(r,s) = \left(1 + 4\pi\sigma_b \left(\gamma_1 r^2 e^{-2\pi r^2} + \gamma_2 (r-a)^2 e^{-2\pi (r-a)^2} + 2\sqrt{\gamma_1 \gamma_2} r(r-a) e^{-\pi r^2 - \pi (r-a)^2} \cos(2\pi as)\right)\right) \exp\left(-\sigma_b \left(\gamma_1 e^{-2\pi r^2} + \gamma_2 e^{-2\pi (r-a)^2} + 2\sqrt{\gamma_1 \gamma_2} e^{-\pi r^2 - \pi (r-a)^2} \cos(2\pi as)\right)\right).$$

Figure: For each figure; Left: Spectrogram of two noisy parallel chirps. Zeros are shown in white. Right: Heatmap of $\rho(z)$. The zeros of the figure on the left are shown in purple.

Arnaud Poinas	Zeros of spectrogram of noisy signals	9th June 2022 30 / 36
---------------	---------------------------------------	-----------------------

Figure: Spectrogram of two chirps with noise (on the left) and without noise (on the right). In each case, the zeros are shown as white circles and one of the curve C_N considered in the following Proposition is shown in yellow.

Let $\varepsilon > 0$ and $N \in \mathbb{N}$. We consider the parallelogram C_N whose extremities are the points such that

 $(r, s) \in \{(0, N/a), (0, (N+1)/a), (a, N/a), (a, (N+1)/a)\}$ where N is any integer. We then consider the following assumptions:

$$a \leqslant \sqrt{\frac{2}{\pi}} \text{ or } \frac{1}{2} |\log(\gamma_1) - \log(\gamma_2)| \ge -2 \operatorname{arccosh} \left(\sqrt{\frac{\pi}{2}}a\right) + a\sqrt{\pi^2 a^2 - 2\pi};$$

$$|\log(\gamma_1) - \log(\gamma_2)| < 2\pi a^2$$

$$4 \frac{e^{-u^2}}{\sqrt{2\pi}} \left(a + \frac{1}{a} + \frac{2\sqrt{2}}{u}\right) \leqslant \varepsilon; \text{ where}$$

$$u = \sqrt{\sigma_b} \min\left(|\sqrt{\gamma_1} - \sqrt{\gamma_2}e^{-\pi a^2}|, |\sqrt{\gamma_2} - \sqrt{\gamma_1}e^{-\pi a^2}|\right).$$

Then, under these three assumptions, $Spec(\xi + x)$ has a unique zero inside C_N with probability $\ge 1 - \varepsilon$.

If
$$\gamma_1 = \gamma_2 = \gamma$$
 and $a \leqslant \sqrt{\frac{2}{\pi}}$,
 \mathbb{P} (unique zero inside C_N) = 1 - $O\left(e^{-\gamma\sigma_b\left(1-e^{-\gamma}\right)}\right)$

Outline

1 Zeros of the spectrogram of complex white noise

- 2 Intensity of zeros of the spectrogram of a noisy signal
- 3 Behaviour of zeros in the presence of specific signals
 - Hermite functions
 - Linear chirps
 - Pairs of parallel linear chirps

4 Some open problems and conclusion

Open problems

- Higher order correlation between zeros of the spectrogram of a noisy signal.
- Density of local maxima of the spectrogram of a noisy signal.
- Correlation of zeros and local maxima of the spectrogram of white noise.

Problems I've tried to tackle but gave up because it looked too complicated for me.

- Higher order correlation between zeros of the spectrogram of a noisy signal.
- Density of local maxima of the spectrogram of a noisy signal.
- Correlation of zeros and local maxima of the spectrogram of white noise.

Let $\rho_{cross}(z, w)$ be the cross correlation between zeros and local maxima of the spectrogram of complex Gaussian white noise at points $z, w \in \mathbb{C}$. Then, $\rho_{cross}(z, w)$ only depends on $r = |z - w|\sqrt{\pi}$ and is equal to

$$\int_{\mathbb{C}^{3}} \frac{|u|^{2}(|w|^{2}-|v|^{2})\mathbb{1}_{|w|>|v|}}{\det(\Lambda(r))\pi^{3}} \exp\left(-\left\langle \begin{pmatrix} 0\\ u\\ 0\\ v\\ w \end{pmatrix}, \Lambda(r)^{-1}\begin{pmatrix} 0\\ u^{*}\\ 0\\ v^{*}\\ w^{*} \end{pmatrix} \right\rangle \right) \mathrm{d}u \mathrm{d}v \mathrm{d}w,$$

where

$$\Lambda(r) := \begin{pmatrix} 1 & 0 & -r & r^2 & -1 \\ 0 & 1 & 1-r^2 & -r(2-r^2) & -r \\ -r & 1-r^2 & e^{r^2} & 0 & 0 \\ r^2 & -r(2-r^2) & 0 & 2e^{r^2} & 0 \\ -1 & -r & 0 & 0 & e^{r^2} \end{pmatrix}$$

Figure: Monte-Carlo approximation of the cross-correlation between zeros and local maxima with respecting to their relative distance.

Conclusion

- Expression of the density of zeros of Spec(x + ξ) as a function of Spec(x).
- Rouché's theorem explains the "trapping" of zeros.
- We can mathematically describe the intensity of zeros when the signal is Hermite, a linear chirp or two parallel linear chirps.

Conclusion

- Expression of the density of zeros of Spec(x + ξ) as a function of Spec(x).
- Rouché's theorem explains the "trapping" of zeros.
- We can mathematically describe the intensity of zeros when the signal is Hermite, a linear chirp or two parallel linear chirps.

Thank you for your attention!