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Definition
The short time Fourier transform (STFT) of a signal x : R→ C with
Gaussian window

g(t) = 1
21/4

e−πt2

is defined by

STFT (x)(τ, ω) :=
∫
R
x(t)e−π(t−τ)2e−2iπωtdt.

Definition
The spectrogram of a signal x : R→ C is defined by

∀z = τ + iω ∈ C, Spec(x)(z) := |STFT (x)(τ, ω)|2.
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Proposition
The STFT can be rewritten as

STFT (x)(τ, ω) = e−π
τ2+ω2

2 B(x)(τ−iω)⇒ Spec(x)(z) = e−π|z|2 |B(x)(z̄)|2

where B(x) is the Bargmann transform defined by

B(x)(z) := 21/4
∫
R
x(t)e2πtz−πt2−πz2/2dt.

Arnaud Poinas Zeros of spectrogram of noisy signals 9th June 2022 3 / 36



Definition
Let ξ : R→ C be the standard complex white noise defined by

ξ(t) =
∑
k>0

akhk(t)

where (ak)k∈N is a sequence of i.i.d. NC(0, Id) random variables and hk is
the k-th Hermite function.

Since (hk)k∈N is an orthonormal basis of L2(R) then:
∀t ∈ R, ξ(t) ∼ NC(0, Id).
∀t, t ′ ∈ R with t 6= t ′, ξ(t) ⊥⊥ ξ(t ′).
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Proposition
Let hk be the k-th Hermite function. Then,

B(hk)(z) = πk/2zk
√
k!

The spectrogram of ξ writes

Spec(ξ)(z) = e−π|z|2 |F (z̄)|2 , where F (z) :=
∑
k>0

ak
πk/2zk
√
k!

, z ∈ C.

F is the planar Gaussian analytic function with covariance kernel

K (z ,w) = E[F (z)F (w)] =
∑

j,k>0
E[ajak ]π

(z+k)/2z j w̄k
√
j!k!

=
∑

j,k>0

(zw̄)k

k! = eπzw̄
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Definition
Let X be a point process. We define its intensity function ρ : C→ R+ by

ρ(z)dz = P(X has a point in a ball centered in z with volume dz)

If X is the point process of zeros of the spectrogram of white noise then

X is stationary;
X is isotropic;
∀z ∈ C, ρ(z) = 1;
X is NOT a DPP.
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Definition
Let X be a point process. We define its intensity function ρ : C→ R+ by

ρ(z)dz = P(X has a point in a ball centered in z with volume dz)

If X is the point process of zeros of the spectrogram of a noisy signal then

X is stationary;
X is isotropic;
∀z ∈ C, ρ(z) = 1.
X is (probably) NOT a DPP.

Main problem: What are the properties of
the zeros of the spectrogram of a noisy
signal?
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Theorem (1)
The intensity ρ(z) of the point process of zeros of Spec(x + ξ)(z) satisfies

ρ(z) =
(
1 + Spec(x)(z) + ∆Spec(x)(z)

4π

)
exp (−Spec(x)(z))

Attempt of interpretation:

(1 + Spec(x)(z)) exp (−Spec(x)(z)) decreasing function of
Spec(x)(z) =⇒ zeros avoid locations where Spec(x)(z) has a high
value.
∆Spec(x)(z)

4π exp (−Spec(x)(z)) =⇒ zeros prefers locations where
Spec(x)(z) has large variations.

1Formula appears in a different form in: Luis Alberto Escudero, Naomi Feldheim, Günther
Koliander, José-Luis Romero. Efficient computation of the zeros of the Bargmann transform
under additive white noise. (2021)
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Proof

The spectrogram of a noisy signal x + ξ writes

Spec(x + ξ)(z) = e−π|z|2 |B(x + ξ)(z̄)|2 = e−π|z|2 |F (z̄) + B(x)(z̄)|2 .

Let ρ(z) be the intensity function of zeros of the Gaussian field
F (z̄) + B(x)(z̄).

Kac-Rice formula:

ρ(z̄) = E
[

det
(
∂z (F (z) + B(x)(z)) ∂z (F (z) + B(x)(z))
∂z̄ (F (z) + B(x)(z)) ∂z̄ (F (z) + B(x)(z))

)∣∣∣∣F (z) + B(x)(z) = 0
]

×pF (z)+B(x)(z)(0)

⇒ ρ(z̄) = E
[
|∂z(F (z) + B(x)(z))|2

∣∣∣F (z) + B(x)(z) = 0
]
pF (z)(−B(x)(z))
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F (z) ∼ NC(0, eπ|z|2) ⇒ pF (z)(−B(x)(z)) =
exp

(
−e−π|z|2 |B(x)(z)|2

)
πeπ|z|2

,

hence

ρ(z̄) = E
[
|∂z(F (z) + B(x)(z))|2

∣∣∣F (z) + B(x)(z) = 0
]

×
exp

(
−e−π|z|2 |B(x)(z)|2

)
πeπ|z|2

.

where ∇′z = ∂z − πz̄ .

Arnaud Poinas Zeros of spectrogram of noisy signals 9th June 2022 10 / 36



F (z) ∼ NC(0, eπ|z|2) ⇒ pF (z)(−B(x)(z)) =
exp

(
−e−π|z|2 |B(x)(z)|2

)
πeπ|z|2

,

hence

ρ(z̄) = E
[
|∂z(F (z) + B(x)(z))|2

∣∣∣F (z) + B(x)(z) = 0
]

×
exp

(
−e−π|z|2 |B(x)(z)|2

)
πeπ|z|2

where ∇′z = ∂z − πz̄ .

Arnaud Poinas Zeros of spectrogram of noisy signals 9th June 2022 10 / 36



F (z) ∼ NC(0, eπ|z|2) ⇒ pF (z)(−B(x)(z)) =
exp

(
−e−π|z|2 |B(x)(z)|2

)
πeπ|z|2

,

hence

ρ(z̄) = E
[
|∇′z(F (z) + B(x)(z))|2

∣∣∣F (z) + B(x)(z) = 0
]

×
exp

(
−e−π|z|2 |B(x)(z)|2

)
πeπ|z|2

where ∇′z = ∂z − πz̄ .

Arnaud Poinas Zeros of spectrogram of noisy signals 9th June 2022 10 / 36



Note that

E
[
∇′zF (z)F (w)

]
= ∇′zK (z ,w) = ∇′z(eπzw̄ ) = π(ω̄ − z̄)eπzw̄ ,

hence

E
[
∇′zF (z)F (z)

]
= 0 ⇒ F (z) and ∇′zF (z) are independent.

Thus,
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Finally,

E[∇′zF (z)∇′ωF (w)] = ∇′z∇′ω̄(eπzw̄ ) = π(1 + π|z − w |2)eπzω̄

hence
E[|∇′zF (z)|2] = πeπ|z|2 .

Finally,

ρ(z̄) = (πeπ|z|2 + |∇′zB(x)(z)|2)
exp

(
−e−π|z|2 |B(x)(z)|2

)
πeπ|z|2

=⇒ ρ(z) =
(
1 + |∇

′
z̄B(x)(z̄)|2

πeπ|z|2

)
exp

(
−e−π|z|2 |B(x)(z̄)|2

)
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Expressing ρ(z) as a function of Spec(x)(z)

ρ(z) =
(
1 + |∇

′
z̄B(x)(z̄)|2

πeπ|z|2

)
exp

(
−e−π|z|2 |B(x)(z̄)|2

)

Spec(x)(z) = e−π|z|2 |B(x)(z̄)|2

∆Spec(x)(z) = 4 |∇
′
z̄ (B(x)(z̄))|2

eπ|z|2
− 4πSpec(x)(z)
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Expressing ρ(z) as a function of Spec(x)(z)
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Summary

Theorem

ρ(z) =
(
1 + Spec(x)(z) + ∆Spec(x)(z)

4π

)
exp (−Spec(x)(z))

Spec(x)(z) ∆Spec(x)(z) ρ(z)

≈ 0 ≈ 0 1

� 0 Any ≈ 0

≈ 0 > 0 > 1
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Proposition
Let hk be the k-th Hermite function (k ∈ N\{0}). The spectrogram of hk
satisfies

Spec(hk)(z) = πk |z |2k

k! e−π|z|2 .

(a) Plot of h10 (b) Spectrogram of h10
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Proposition
Let hk be the k-th Hermite function (k ∈ N\{0}). The spectrogram of hk
only depends on r = π|z |2 and satisfies

Spec(hk)(r) = rk

k!e
−r .

(c) Plot of h10 (d) Spectrogram of h10
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Proposition
Let γ ∈ R+. The intensity of zeros ρ(z) of Spec(ξ +√γhk) only depends
on r = π|z |2 and is equal to

ρ(r) =
(
1 + γ

rk−1

k! (k − r)2 e−r
)

exp
(
−γ r

k

k!e
−r
)

Figure: Left: Spectrogram of a noisy hermite function for γ = 1000 and k = 10. Zeros are
shown in white. Right: Heatmap of ρ(z). The zeros of the figure on the left are shown in purple.
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Figure: Blue: Spec(
√
1000h10)(z) with respect to r = π|z|2. Red: Density of zeros of

Spec(ξ +
√
1000h10)(z) with respect to r = π|z|2.
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Proposition
Let k ∈ N\{0}. Let N(B(0,R)) be the number of zeros of
Spec(ξ +√γhk) in a centered ball of radius R. Then,

E[N(B(0,R))] = k − (k − πR2) exp
(
−γ π

kR2k

k! e−πR2
)
.

An interesting consequence is that the average number of zeros in
B
(
0,
√

k
π

)
is equal to k and does not depends on γ.
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(a) γ = 1000 (b) γ = 500

(c) γ = 100 (d) γ = 50

Figure: Spec(ξ +√γh10) and ρ(z) for various values of γ. The red line show the ball with radius√
10/π. Zeros inside the ball are shown in red.
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Theorem (Rouché’s theorem)
Let C be a closed, simple curve of C. Let f and g be holomorphic
functions on the interior of C. If

∀z ∈ C , |f (z)− g(z)| < |f (z)|,

then f and g have the same number of zeros in the interior of C, where
each zero is counted as many times as its multiplicity.

Applying this result to f (z) = B(x)(z) and g(z) = F (z) + B(x)(z) yields

Corollary (The trapping of zeros)
Let C be a closed, simple curve of C and let x : R→ C. If

∀z ∈ C , Spec(ξ)(z) < Spec(x)(z),

then Spec(ξ + x)(z) and B(x)(z̄) have the same number of zeros in the
interior of C, where each zero is counted as many times as its multiplicity.
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∀z ∈ C , |f (z)− g(z)| < |f (z)|,

then f and g have the same number of zeros in the interior of C, where
each zero is counted as many times as its multiplicity.

Applying this result to f (z) = B(x)(z) and g(z) = F (z) + B(x)(z) yields
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Recall that B(hk)(z) = πk/2zk

k! ⇒ 0 is a zero with multiplicity k.

Proposition
Let k ∈ N and ε > 0. Let N(B(0,R)) be the number of zeros of
Spec(ξ +√γhk) in a centered ball of radius R.
If γ > e−k and

γ >
k!
kk

(
− log(ε) + k

2 + log
(
2
√
k + k2 + 1√

π

))
then

P
(
N
(
B
(
0,
√
k/π

))
= k

)
> 1− ε.

In other words,

P
(
N
(
B
(
0,
√
k/π

))
= k

)
= 1− O(e−γ).
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We consider a linear chirp x(t) := e2iπt(a+bt).

Proposition
For all z = τ + iω ∈ C,

Spec(x)(z) = σbe−πσ
2
b(ω−(a+bτ))2 , where σb :=

√
2

1 + 4b2 .

Figure: Left: Plot of a linear chirp. Right: Spectrogram of x(t) = e2iπt(−5+0.4t). The line
y = −5 + 0.8x is shown in red.
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We consider a linear chirp x(t) := e2iπt(a+bt).

Proposition
For all z = τ + iω ∈ C, Spec(x)(r) only depends on
r := σb√

2(ω − (a + 2bτ)), the distance between z and the line y = a + 2bx,
and Spec(x)(r) = σbe−πσ

2
br2 , where σb :=

√
2

1 + 4b2 .

Figure: Left: Plot of a linear chirp. Right: Spectrogram of x(t) = e2iπt(−5+0.4t). The line
y = −5 + 0.8x is shown in red.

Arnaud Poinas Zeros of spectrogram of noisy signals 9th June 2022 22 / 36



Proposition
The density ρ(z) of zeros of Spec(ξ +√γx)(z) only depends on
r := σb√

2(ω − (a + 2bτ)) and is equal to

ρ(r) =
(
1 + 4πγσbr2e−2πr2

)
exp

(
−γσbe−2πr2

)
, where σb :=

√
2

1 + 4b2 .

Figure: Left: Spectrogram of a noisy chirp for γ = 1000, a = −5 and b = 0.4. Zeros are shown
in white. Right: Heatmap of ρ(z). The zeros of the figure on the left are shown in purple.
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Figure: Blue: Spectrogram of the chirp with respect to the distance with the central axis. Red:
Density of zeros of the noisy chirp with respect to the distance with the central axis.
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Let R ∈ R+. Consider the rectangle

B =
{
z = τ + iω ∈ C : r ∈ [0,R], σb√

2
(τ + 2bω) ∈ [0, 1]

}
.

Proposition
Let N(B) be the number of zeros of Spec(ξ +√γx) in B. Then,

E[N(B)] = R exp
(
−γσbe−2πR2)
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In this section, we consider two parallel linear chirps:

x(t) = √γ1e2iπt(a1+bt) +√γ2e2iπt(a2+bt).

Proposition
Let z = τ + iω ∈ C and define

r := σb√
2(ω − 2bτ − a1);

a := σb√
2(a2 − a1);

s := σb√
2(τ + 2bω − (a1 + a2)b);

Then, Spec(x)(z), written as a function of r and s is equal to

Spec(x)(r , s) = σb
(
γ1e−2πr2 + γ2e−2π(r−a)2

+2√γ1γ2e−πr2−π(r−a)2 cos (2πas)
)
.
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Figure: Spectrogram of two chirps with γ1 = 10, γ2 = 30, b = 1/2, a1 = 0 and a2 being either 1
(left figure) or 2 (right figure).
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The spectrogram of the superposition of chirps vanish at some points.

Proposition
Spec(x)(r , s) = 0 if and only if

r = a
2 −

log(γ2)− log(γ1)
4aπ and ∃k ∈ Z s.t. s = 1 + 2k

2a
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Recall that we consider two parallel linear chirps:

x(t) = √γ1e2iπt(a1+bt) +√γ2e2iπt(a2+bt).

Proposition
The density ρ(z) of the zeros of Spec(ξ + x) can be expressed as a
function of r and s by

ρ(r , s) =
(
1 + 4πσb

(
γ1r2e−2πr2 + γ2(r − a)2e−2π(r−a)2

+2√γ1γ2r(r − a)e−πr2−π(r−a)2 cos (2πas)
))

exp
(
−σb

(
γ1e−2πr2

+γ2e−2π(r−a)2 + 2√γ1γ2e−πr2−π(r−a)2 cos (2πas)
))
.
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(a) γ1 = γ2 = 100, a = 4, b = 0.4 (b) γ1 = γ2 = 100, a = 2, b = 0.4

(c) γ1 = 100, γ2 = 50, a = 1, b = 0.4 (d) γ1 = 500, γ2 = 50, a = 0.5, b = 0.4

Figure: For each figure; Left: Spectrogram of two noisy parallel chirps. Zeros are shown in
white. Right: Heatmap of ρ(z). The zeros of the figure on the left are shown in purple.
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Figure: Spectrogram of two chirps with noise (on the left) and without noise (on the right). In
each case, the zeros are shown as white circles and one of the curve CN considered in the
following Proposition is shown in yellow.
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Proposition
Let ε > 0 and N ∈ N. We consider the parallelogram CN whose
extremities are the points such that
(r , s) ∈ {(0,N/a), (0, (N + 1)/a), (a,N/a), (a, (N + 1)/a)} where N is any
integer. We then consider the following assumptions:

1 a 6
√

2
π or 1

2 | log(γ1)− log(γ2)| > −2arccosh
(√

π
2 a
)

+ a
√
π2a2 − 2π;

2 | log(γ1)− log(γ2)| < 2πa2

3 4 e−u2
√
2π

(
a + 1

a + 2
√
2

u

)
6 ε; where

u =
√
σb min

(
|√γ1 −

√
γ2e
−πa2 |, |√γ2 −

√
γ1e
−πa2 |

)
.

Then, under these three assumptions, Spec(ξ + x) has a unique zero inside
CN with probability > 1− ε.

If γ1 = γ2 = γ and a 6
√

2
π ,

P (unique zero inside CN) = 1− O

e−γσb

(
1−e−πa2

)2 .
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Open problems

Higher order correlation between zeros of the spectrogram of a noisy
signal.
Density of local maxima of the spectrogram of a noisy signal.
Correlation of zeros and local maxima of the spectrogram of white
noise.

Arnaud Poinas Zeros of spectrogram of noisy signals 9th June 2022 33 / 36



Problems I’ve tried to tackle but gave up
because it looked too complicated for me.

Higher order correlation between zeros of the spectrogram of a noisy
signal.
Density of local maxima of the spectrogram of a noisy signal.
Correlation of zeros and local maxima of the spectrogram of white
noise.
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Proposition
Let ρcross(z ,w) be the cross correlation between zeros and local maxima
of the spectrogram of complex Gaussian white noise at points z ,w ∈ C.
Then, ρcross(z ,w) only depends on r = |z − w |

√
π and is equal to

∫
C3

|u|2(|w |2 − |v |2)1|w |>|v |
det(Λ(r))π3 exp

−
〈

0
u
0
v
w

 ,Λ(r)−1


0
u∗
0
v∗
w∗


〉dudvdw ,

where

Λ(r) :=


1 0 −r r2 −1
0 1 1− r2 −r(2− r2) −r
−r 1− r2 er2 0 0
r2 −r(2− r2) 0 2er2 0
−1 −r 0 0 er2

 .
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Figure: Monte-Carlo approximation of the cross-correlation between zeros and local maxima
with respecting to their relative distance.
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Conclusion

Expression of the density of zeros of Spec(x + ξ) as a function of
Spec(x).
Rouché’s theorem explains the "trapping" of zeros.
We can mathematically describe the intensity of zeros when the signal
is Hermite, a linear chirp or two parallel linear chirps.

Thank you for your attention!
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