
Random Spanning Forests on Graphs for
Fast Laplacian-Based Computations

Nicolas Tremblay

(joint work with P.-O. Amblard, L. Avena, S. Barthelmé, A. Gaudillière, Y. Pilavci)

CNRS, GIPSA-lab, Univ. Grenoble-Alpes, Grenoble-INP, France

Contents

I A preamble: why am I here?
I Part I: Laplacian-based computations?
I Part II: A few basics on random spanning forests
I Part III: Inverse trace via random spanning forests
I Part IV: Extensions, ongoing work

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 1 / 35

DPPs and USTs

I Consider a connected graph with n nodes and m edges:

I A spanning tree is a subset of edges that i/ are connected, ii/ do not
contain cycles, iii/ span all nodes.

I A graph of size n contains between 1 and nn−2 different spanning trees
I A uniform spanning tree (UST) is a spanning tree, drawn uniformly at

random from the set of all spanning trees.
I Classical result: A UST is a (projective) DPP defined over the set of edges

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 2 / 35

DPPs and USTs

I Consider a connected graph with n nodes and m edges:

I A spanning tree is a subset of edges that i/ are connected, ii/ do not
contain cycles, iii/ span all nodes.

I A graph of size n contains between 1 and nn−2 different spanning trees
I A uniform spanning tree (UST) is a spanning tree, drawn uniformly at

random from the set of all spanning trees.
I Classical result: A UST is a (projective) DPP defined over the set of edges

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 2 / 35

DPPs and USTs

I Consider a connected graph with n nodes and m edges:

I A spanning tree is a subset of edges that i/ are connected, ii/ do not
contain cycles, iii/ span all nodes.

I A graph of size n contains between 1 and nn−2 different spanning trees

I A uniform spanning tree (UST) is a spanning tree, drawn uniformly at
random from the set of all spanning trees.

I Classical result: A UST is a (projective) DPP defined over the set of edges

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 2 / 35

DPPs and USTs

I Consider a connected graph with n nodes and m edges:

I A spanning tree is a subset of edges that i/ are connected, ii/ do not
contain cycles, iii/ span all nodes.

I A graph of size n contains between 1 and nn−2 different spanning trees
I A uniform spanning tree (UST) is a spanning tree, drawn uniformly at

random from the set of all spanning trees.

I Classical result: A UST is a (projective) DPP defined over the set of edges

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 2 / 35

DPPs and USTs

I Consider a connected graph with n nodes and m edges:

I A spanning tree is a subset of edges that i/ are connected, ii/ do not
contain cycles, iii/ span all nodes.

I A graph of size n contains between 1 and nn−2 different spanning trees
I A uniform spanning tree (UST) is a spanning tree, drawn uniformly at

random from the set of all spanning trees.
I Classical result: A UST is a (projective) DPP defined over the set of edges

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 2 / 35

To give you the flavor of this talk

I DPPs can be understood as (weakly) repulsive summaries of a ground set
of elements

I A general ML/SP question is: what information is kept by the sampling
process? What can be estimated about the original set from this summary?

I Given that USTs (and their generalisation Random Spanning Forests) are
DPPs, the question translates as:

What can we learn about a graph given a collection of USTs

, ,. . . ?

(trivial example: lower bound on maximum degree)

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 3 / 35

To give you the flavor of this talk

I DPPs can be understood as (weakly) repulsive summaries of a ground set
of elements

I A general ML/SP question is: what information is kept by the sampling
process? What can be estimated about the original set from this summary?

I Given that USTs (and their generalisation Random Spanning Forests) are
DPPs, the question translates as:

What can we learn about a graph given a collection of USTs

, ,. . . ?

(trivial example: lower bound on maximum degree)

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 3 / 35

Contents

I Part I: Laplacian-based computations?
I Part II: A few basics on random spanning forests
I Part III: Inverse trace via random spanning forests
I Part IV: Extensions, ongoing work

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 4 / 35

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 5 / 35

Graph-based data?

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 5 / 35

Graph-based data?

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 5 / 35

Graph-based data?

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 5 / 35

Graph-based data?

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 5 / 35

Graph-based data?

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 5 / 35

Graph-based data?

Graph-based data =

a connectivity structure 1

2

3

4

A =

[
0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

]
D =

[
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

]
L = D− A =

[2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1

]

+

possibly a signal on the nodes
(and/or edges)

1

2

3

4

y = [y1, y2, y3, y4]> ∈ R4

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 6 / 35

Different operations on graphs or signals defined on graphs

on graphs
I community detection, un-, semi-, supervised learning
I control of speed of diffusion (information, disease)
I graph simplification (sparsification, node merging, etc.)
I graph visualization

on signals defined on graphs
I Tikhonov/wavelet denoising
I signal compression / sampling
I inpainting / interpolation
I graph filtering (e.g. in GNNs)

+ many other examples from many different fields of research...

=⇒ Some of these operations are based on the Laplacian matrix

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 7 / 35

Motivation I. Signal denoising: 1D background

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

t

y t

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 8 / 35

Motivation I. Signal denoising: 1D background

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

t

y t

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 9 / 35

Motivation I. Signal denoising: 1D background

I Formally, we assume that:
I There is an underlying signal x(t)
I We have noisy observations for a discrete set of time samples:

yi = x(ti) + εi

I εi ∼ N(0, σ2) (white Gaussian noise)

I We seek to estimate x from the noisy observations y

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 10 / 35

Motivation I. Signal denoising: 1D background

I Consider the following estimator (for q > 0)

x̂ = argmin
z

q
1
2

n∑
i=1

(z(ti)− y(ti))2 +
1
2

ˆ
Ω

(
d

dt
z(t)

)2

dt

I
∑n

i=1(z(ti)− y(ti))2 is a data-fidelity term
I
´

Ω
(d
dt
z(t))2dt is a smoothness penalty

I q sets the trade-off between data fidelity and smoothness

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 11 / 35

Motivation I. Signal denoising: 1D background

x̂ = argmin
z

q
1
2

n∑
i=1

(z(ti)− y(ti))2 +
1
2

ˆ
Ω

(
d

dt
z(t)

)2

dt

Observations y

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

t

y t

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 12 / 35

Motivation I. Signal denoising: 1D background

x̂ = argmin
z

q
1
2

n∑
i=1

(z(ti)− y(ti))2 +
1
2

ˆ
Ω

(
d

dt
z(t)

)2

dt

For a given q > 0

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

t

y t

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 12 / 35

Motivation I. Signal denoising: 1D background

x̂ = argmin
z

q
1
2

n∑
i=1

(z(ti)− y(ti))2 +
1
2

ˆ
Ω

(
d

dt
z(t)

)2

dt

For a large q > 0

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

t

y t

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 12 / 35

Motivation I. Signal denoising: 1D background

x̂ = argmin
z

q
1
2

n∑
i=1

(z(ti)− y(ti))2 +
1
2

ˆ
Ω

(
d

dt
z(t)

)2

dt

For a small q > 0

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

t

y t

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 12 / 35

Motivation I. Signal denoising: 1D background

x̂ = argmin
z

q
1
2

n∑
i=1

(z(ti)− y(ti))2 +
1
2

ˆ
Ω

(
d

dt
z(t)

)2

dt

For q → 0+

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

t

y t

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 12 / 35

Motivation I. Signal denoising: 1D background

I There is a simple way of estimating the smoothness penalty term when the
observations fall on a regular grid:

ˆ
Ω

(
d

dt
z(t))2dt '

n∑
t=2

(zt − zt−1)2 =
1
2
z tLz

where L ∈ Rn×n is the

- discrete Laplace operator.

- equivalently the Laplacian of the path graph:

I One obtains the so-called Tikhonov regularisation problem:

x̂ = argmin
z

q
1
2
‖z − y‖2 +

1
2
z tLz ,

which exact solution reads

x̂ = Ky with K = (qI + L)−1qI ∈ Rn×n.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 13 / 35

Motivation I. Signal denoising: 1D background

I There is a simple way of estimating the smoothness penalty term when the
observations fall on a regular grid:

ˆ
Ω

(
d

dt
z(t))2dt '

n∑
t=2

(zt − zt−1)2 =
1
2
z tLz

where L ∈ Rn×n is the

- discrete Laplace operator.

- equivalently the Laplacian of the path graph:

I One obtains the so-called Tikhonov regularisation problem:

x̂ = argmin
z

q
1
2
‖z − y‖2 +

1
2
z tLz ,

which exact solution reads

x̂ = Ky with K = (qI + L)−1qI ∈ Rn×n.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 13 / 35

Motivation I. Signal denoising: extension to arbitrary graphs

graph G, L signal x

-0.4

-0.2

0

0.2

0.4

noisy signal y

The graph Tikhonov regularization problem is similarly defined as

x̂ = argmin
z

q
1
2
‖z − y‖2 +

1
2
z tLz .

Note that the smoothness penalty term verifies 1
2z tLz =

∑
i,j Aij(zi − zj)

2.

The analytic solution reads: x̂ = Ky with K = (qI + L)−1qI ∈ Rn×n.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 14 / 35

Motivation II. Semi-supervised learning on graphs

I SSL: given a few pre-labeled nodes of a graph, infer communities

⇒?

I Let y` encode the information a priori known:

y`(i) =

{
1 if node i is known to belong to class `
0 if not.

I A classical SSL algo looks for a labeling function f` that is both (with a
trade-off parameter µ > 0):
I smooth on the graph (f >` Lf` is small)
I close to y`

I the larger f`(i), the higher the chance that i belongs to class `.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 15 / 35

Motivation II. Semi-supervised learning on graphs

I SSL: given a few pre-labeled nodes of a graph, infer communities

⇒?

I Let y` encode the information a priori known:

y`(i) =

{
1 if node i is known to belong to class `
0 if not.

I A classical SSL algo looks for a labeling function f` that is both (with a
trade-off parameter µ > 0):
I smooth on the graph (f >` Lf` is small)
I close to y`

I the larger f`(i), the higher the chance that i belongs to class `.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 15 / 35

Motivation II. Semi-supervised learning on graphs

I SSL: given a few pre-labeled nodes of a graph, infer communities

⇒?

I Let y` encode the information a priori known:

y`(i) =

{
1 if node i is known to belong to class `
0 if not.

I A classical SSL algo looks for a labeling function f` that is both (with a
trade-off parameter µ > 0):
I smooth on the graph (f >` Lf` is small)
I close to y`

I the larger f`(i), the higher the chance that i belongs to class `.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 15 / 35

Motivation II. Semi-supervised learning on graphs

I SSL: given a few pre-labeled nodes of a graph, infer communities

⇒?

I Let y` encode the information a priori known:

y`(i) =

{
1 if node i is known to belong to class `
0 if not.

I A classical SSL algo looks for a labeling function f` that is both (with a
trade-off parameter µ > 0):
I smooth on the graph (f >` Lf` is small)
I close to y`

I the larger f`(i), the higher the chance that i belongs to class `.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 15 / 35

Motivation II. Semi-supervised learning on graphs

I The solution may be written (in the usual SSL formalism) as

f` =
µ

2 + µ

(
I− 2

2 + µ
D−1W

)−1

y`.

I Can be re-written as:

f` = Ky`.

where K = (Q + L)−1 Q and Q = µ
2D is diagonal and strictly positive.

I This generalizes the previous case where we needed

x̂ = Ky with K = (qI + L)−1qI.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 16 / 35

Motivation III. Degrees of freedom of the linear smoother K = (Q+ L)−1Q

I x̂ = Ky is one instance of the more general class of linear smoothers
I a useful quantity in this context is its so-called effective degrees of

freedom defined as

δ = Tr (K) = Tr
(
(Q + L)−1Q

)
I this quantity is useful for instance for optimal choice of parameter q in

Tikhonov’s regularization (using AIC, GCV, etc.)

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 17 / 35

Motivation IV. Effective resistances

Definition Let L† be the Moore-Penrose pseudo-inverse of L. The effective
resistance of any edge e = (i , j) ∈ E reads

re = L†ii + L†jj − 2L†ij > 0.

Property ∀e ∈ E , pe ∝ Aere defines a probability distribution over the edges.

What for? For instance: spectral sparsification.

Definition Let ε ∈]0, 1[. Let G be a graph and L its Laplacian. Let H be a
subgraph of G, of same size but hopefully much sparser, and X its Laplacian.
Then H is a ε-spectral sparsifier of G if

(1− ε)L � X � (1 + ε)L.

Theorem Let ε ∈]0, 1[. Sample m edges iid with replacement according to p.
The obtained subgraph (with properly re-weighted edges) is a spectral sparsifier
with high probability provided

m ≥ O
(
ε−2n log n

)
.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 18 / 35

Motivation IV. Effective resistances

Definition Let L† be the Moore-Penrose pseudo-inverse of L. The effective
resistance of any edge e = (i , j) ∈ E reads

re = L†ii + L†jj − 2L†ij > 0.

Property ∀e ∈ E , pe ∝ Aere defines a probability distribution over the edges.

What for? For instance: spectral sparsification.

Definition Let ε ∈]0, 1[. Let G be a graph and L its Laplacian. Let H be a
subgraph of G, of same size but hopefully much sparser, and X its Laplacian.
Then H is a ε-spectral sparsifier of G if

(1− ε)L � X � (1 + ε)L.

Theorem Let ε ∈]0, 1[. Sample m edges iid with replacement according to p.
The obtained subgraph (with properly re-weighted edges) is a spectral sparsifier
with high probability provided

m ≥ O
(
ε−2n log n

)
.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 18 / 35

Motivation IV. Effective resistances

Definition Let L† be the Moore-Penrose pseudo-inverse of L. The effective
resistance of any edge e = (i , j) ∈ E reads

re = L†ii + L†jj − 2L†ij > 0.

Property ∀e ∈ E , pe ∝ Aere defines a probability distribution over the edges.

What for? For instance: spectral sparsification.

Definition Let ε ∈]0, 1[. Let G be a graph and L its Laplacian. Let H be a
subgraph of G, of same size but hopefully much sparser, and X its Laplacian.
Then H is a ε-spectral sparsifier of G if

(1− ε)L � X � (1 + ε)L.

Theorem Let ε ∈]0, 1[. Sample m edges iid with replacement according to p.
The obtained subgraph (with properly re-weighted edges) is a spectral sparsifier
with high probability provided

m ≥ O
(
ε−2n log n

)
.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 18 / 35

Motivation IV. Effective resistances

Definition Let L† be the Moore-Penrose pseudo-inverse of L. The effective
resistance of any edge e = (i , j) ∈ E reads

re = L†ii + L†jj − 2L†ij > 0.

Property ∀e ∈ E , pe ∝ Aere defines a probability distribution over the edges.

What for? For instance: spectral sparsification.

Definition Let ε ∈]0, 1[. Let G be a graph and L its Laplacian. Let H be a
subgraph of G, of same size but hopefully much sparser, and X its Laplacian.
Then H is a ε-spectral sparsifier of G if

(1− ε)L � X � (1 + ε)L.

Theorem Let ε ∈]0, 1[. Sample m edges iid with replacement according to p.
The obtained subgraph (with properly re-weighted edges) is a spectral sparsifier
with high probability provided

m ≥ O
(
ε−2n log n

)
.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 18 / 35

Motivation IV. Effective resistances

Definition Let L† be the Moore-Penrose pseudo-inverse of L. The effective
resistance of any edge e = (i , j) ∈ E reads

re = L†ii + L†jj − 2L†ij > 0.

Property ∀e ∈ E , pe ∝ Aere defines a probability distribution over the edges.

What for? For instance: spectral sparsification.

Definition Let ε ∈]0, 1[. Let G be a graph and L its Laplacian. Let H be a
subgraph of G, of same size but hopefully much sparser, and X its Laplacian.
Then H is a ε-spectral sparsifier of G if

(1− ε)L � X � (1 + ε)L.

Theorem Let ε ∈]0, 1[. Sample m edges iid with replacement according to p.
The obtained subgraph (with properly re-weighted edges) is a spectral sparsifier
with high probability provided

m ≥ O
(
ε−2n log n

)
.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 18 / 35

A (partial) list of Laplacian-based computation problems

Problem 1 Compute the regularized inverse

x̂ = Ky with

{
K = (Q + L)−1Q
Q diagonal and positive

Problem 2 Compute the degrees of freedom of the linear smoother K:

δ = Tr
(
(Q + L)−1Q

)

Problem 3 Compute the effective resistance re = L†ii + L†jj − 2L†ij of all edges

Many other L-based problems partial spectral information for spectral
clustering, graph cuts, etc.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 19 / 35

In this talk, we will discuss:

Problem Compute the degrees of freedom of the linear smoother K:

δ = Tr
(
(Q + L)−1Q

)
I to simplify, in this talk, we only consider the case where L is the

combinatorial Laplacian of a connected graph and Q = qI (q > 0)
I however, keep in mind that the techniques developed can be extended to:

I any positive diagonal matrix Q
I any choice of Laplacian, e.g., the degree-normalized Laplacian matrix L:

x̂ = (Q + L)−1Qy =
(
Q + D−1/2LD−1/2

)−1
Qy

= D1/2 (Q′ + L
)−1 Q′D−1/2y

I in fact, L may even be any diagonally dominant matrix, via a standard trick
involving two graphs

I It so happens that Yigit Pilavci will discuss some other problems (graph
Tikhonov regularisation) this afternoon at the MLSP seminar

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 20 / 35

Computational challenges

Goal
Compute δ = Tr

(
(qI + L)−1q

)
for large graphs (say n > 106)

Difficulty
Need to compute an inverse, with (naive) cost O(n3)

State-of-the-art
For sparse graphs, a combination of Hutchinson’s estimator and iterative

methods such as Preconditioned Conjugate Gradients (effective to approximate
efficiently (qI + L)−1qy given a vector y) is state-of-the-art

In this work
We formulate (very different) Monte Carlo estimators based on random

spanning forests

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 21 / 35

Contents

I Part I: Laplacian-based computations?
I Part II: A few basics on random spanning forests
I Part III: Inverse trace via random spanning forests
I Part IV: Extensions, ongoing work

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 22 / 35

Forests?

A graph

A spanning forest

A spanning tree

A rooted spanning
forest

A rooted spanning
tree

Another rooted
spanning forest

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 23 / 35

Forests?

A graph

A spanning forest

A spanning tree

A rooted spanning
forest

A rooted spanning
tree

Another rooted
spanning forest

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 23 / 35

Forests?

A graph

A spanning forest

A spanning tree

A rooted spanning
forest

A rooted spanning
tree

Another rooted
spanning forest

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 23 / 35

Forests?

A graph

A spanning forest

A spanning tree

A rooted spanning
forest

A rooted spanning
tree

Another rooted
spanning forest

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 23 / 35

Forests?

A graph

A spanning forest

A spanning tree

A rooted spanning
forest

A rooted spanning
tree

Another rooted
spanning forest

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 23 / 35

Forests?

A graph

A spanning forest

A spanning tree

A rooted spanning
forest

A rooted spanning
tree

Another rooted
spanning forest

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 23 / 35

A few notations

Given a rooted spanning forest φ, we define:
I ρ(φ) its set of roots (the red nodes)
I the root function: rφ(i) is the root of the tree containing node i

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 24 / 35

Random forests?

I Consider the following distribution on forests (q > 0):

P(Φq = φ) ∝ q|ρ(φ)|
∏

(ij)∈φ

Aij

where Aij is the weight of the link between nodes i and j .
I Importantly, sampling from this distribution is efficient (in time roughly
O(|E |/q)) via a variant of Wilson’s algorithm.

I The forest obtained, Φq, is called a Random Spanning Forest (RSF)

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 25 / 35

Wilson’s algorithm for RSF sampling

1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Store all visited nodes in V, and the last visited node
 before ∆ in S
5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V
6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any node in V

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and add all remaining visited
 nodes to V.

7. If it "died" in ∆, then add the last visited node
 before ∆ to S.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: sampling set S

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: a random spanning forest Φq

Wilson’s algorithm for RSF sampling

q1. add ∆ and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
 until it reaches ∆

3. Erase its eventual loops

4. Keep the selected edges and add the last node before ∆
to the set of roots

5. Start a new random walk from any node not yet
 visited and stop when:
 - it reaches ∆
 - it reaches any already visited node

6. Erase its eventual loops and keep the remaining edges

7. If it "died" in ∆, then add the last visited node before ∆
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

Output: a random spanning forest Φq

E (number of steps) = Tr
[
(L + qI)−1 (D + qI)

]
≤ n + 2

|E|
q

Two key properties of RSFs

The matrix K = (L + qI)−1 qI plays a central role in the theory of random
forests. Among other things:
1. the root process ρ(Φq) is a determinantal point process (DPP) with

marginal kernel K, implying for instance:
I Kii is the probability that node i is a root
I Tr (K) is the expected number of roots

2. the probability that node i is rooted at root j in a random forest Φq equals

P
(
rΦq (i) = j

)
= Kij

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 27 / 35

Contents

I Part I: Laplacian-based computations?
I Part II: A few basics on random spanning forests
I Part III: Inverse trace via random spanning forests
I Part IV: Extensions, ongoing work

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 28 / 35

From random forests to the inverse trace

I Recall our objective: compute Tr (K) = Tr
[
(qI + L)−1qI

]
I Recall that Tr (K) is the expected number of roots of a RSF Φq

I A trivial RSF-based Monte-Carlo estimator of Tr (K) is thus:
I draw N independent RSFs
I compute the average of their number of roots
I it is unbiased and its per-sample variance is

∑n
i=1

qλi
(q+λi)

2

I State-of-the-art: Hutchinson’s (aka Girard’s) estimator:
I draw N independent random vectors x verifying E

(
xx>

)
= In

I compute the average 1
N

∑N
i=1 x>Kx (via sparse Cholesky, PCG or poly

approx to compute Kx)
I unbiased: E

[
1
N

∑N
i=1 x>Kx

]
= E

(
x>Kx

)
= E

(
Tr
(
Kxx>

))
= Tr (K)

I per-sample variance in case of Gaussian entries is
∑n

i=1
2q2

(q+λi)
2

I for large/small enough q, RSF’s per-sample variance is better. The precise
interval is spectrum-dependent

I both SOTA and RSF-based estimator run in time O(|E|)

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 29 / 35

From random forests to the inverse trace

I Recall our objective: compute Tr (K) = Tr
[
(qI + L)−1qI

]
I Recall that Tr (K) is the expected number of roots of a RSF Φq

I A trivial RSF-based Monte-Carlo estimator of Tr (K) is thus:
I draw N independent RSFs
I compute the average of their number of roots
I it is unbiased and its per-sample variance is

∑n
i=1

qλi
(q+λi)

2

I State-of-the-art: Hutchinson’s (aka Girard’s) estimator:
I draw N independent random vectors x verifying E

(
xx>

)
= In

I compute the average 1
N

∑N
i=1 x>Kx (via sparse Cholesky, PCG or poly

approx to compute Kx)
I unbiased: E

[
1
N

∑N
i=1 x>Kx

]
= E

(
x>Kx

)
= E

(
Tr
(
Kxx>

))
= Tr (K)

I per-sample variance in case of Gaussian entries is
∑n

i=1
2q2

(q+λi)
2

I for large/small enough q, RSF’s per-sample variance is better. The precise
interval is spectrum-dependent

I both SOTA and RSF-based estimator run in time O(|E|)

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 29 / 35

From random forests to the inverse trace

I Recall our objective: compute Tr (K) = Tr
[
(qI + L)−1qI

]
I Recall that Tr (K) is the expected number of roots of a RSF Φq

I A trivial RSF-based Monte-Carlo estimator of Tr (K) is thus:
I draw N independent RSFs
I compute the average of their number of roots
I it is unbiased and its per-sample variance is

∑n
i=1

qλi
(q+λi)

2

I State-of-the-art: Hutchinson’s (aka Girard’s) estimator:
I draw N independent random vectors x verifying E

(
xx>

)
= In

I compute the average 1
N

∑N
i=1 x>Kx (via sparse Cholesky, PCG or poly

approx to compute Kx)
I unbiased: E

[
1
N

∑N
i=1 x>Kx

]
= E

(
x>Kx

)
= E

(
Tr
(
Kxx>

))
= Tr (K)

I per-sample variance in case of Gaussian entries is
∑n

i=1
2q2

(q+λi)
2

I for large/small enough q, RSF’s per-sample variance is better. The precise
interval is spectrum-dependent

I both SOTA and RSF-based estimator run in time O(|E|)

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 29 / 35

Inverse trace estimation: RSF-based vs. Hutchinson/Girard, pros and cons

Notable advantages of RSF-estimator:
I very easy to implement (∼ 20 lines in Julia)
I minimal memory footprint
I no preprocessing of the graph needed (in fact: no centralized knowledge of

L is needed): only need the ability of running a random walk

Notable disadvantages of RSF-estimator:
I only for diagonally-dominant matrices L and q > 0
I even if theoretical complexities are comparable, the RSF-estimator cannot

take advantage of over-optimized matrix-vector implementations.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 30 / 35

Inverse trace estimation: comparison on a few graphs

Five methods
to compare...

I rf RSF-based estimator
I direct uses Julia’s backslash operator (calls CHOLMOD)
I amg Algebraic Multigrid with Ruge-Stuben coarsening
I cg Conjugate Gradient with diagonal preconditioning
I cg-amg Conjugate Gradient with AMG preconditioning

... on five different graphs: all have around 104 nodes and less than 105 edges

For fair comparison, we plot the effective runtime = average time needed per
iteration × the number of iterations needed to reach a relative error of 2%

Tr(K) / n

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 31 / 35

Inverse trace estimation: comparison on a few graphs

Five methods
to compare...

I rf RSF-based estimator
I direct uses Julia’s backslash operator (calls CHOLMOD)
I amg Algebraic Multigrid with Ruge-Stuben coarsening
I cg Conjugate Gradient with diagonal preconditioning
I cg-amg Conjugate Gradient with AMG preconditioning

... on five different graphs: all have around 104 nodes and less than 105 edges

For fair comparison, we plot the effective runtime = average time needed per
iteration × the number of iterations needed to reach a relative error of 2%

Tr(K) / n

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 31 / 35

Inverse trace estimation: comparison on a few graphs

Five methods
to compare...

I rf RSF-based estimator
I direct uses Julia’s backslash operator (calls CHOLMOD)
I amg Algebraic Multigrid with Ruge-Stuben coarsening
I cg Conjugate Gradient with diagonal preconditioning
I cg-amg Conjugate Gradient with AMG preconditioning

... on five different graphs: all have around 104 nodes and less than 105 edges

For fair comparison, we plot the effective runtime = average time needed per
iteration × the number of iterations needed to reach a relative error of 2%

Tr(K) / n

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 31 / 35

Inverse trace estimation: comparison on a few graphs

Five methods
to compare...

I rf RSF-based estimator
I direct uses Julia’s backslash operator (calls CHOLMOD)
I amg Algebraic Multigrid with Ruge-Stuben coarsening
I cg Conjugate Gradient with diagonal preconditioning
I cg-amg Conjugate Gradient with AMG preconditioning

... on five different graphs: all have around 104 nodes and less than 105 edges

For fair comparison, we plot the effective runtime = average time needed per
iteration × the number of iterations needed to reach a relative error of 2%

Tr(K) / n

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 31 / 35

Contents

I Part I: Laplacian-based computations?
I Part II: A few basics on random spanning forests
I Part III: Inverse trace via random spanning forests
I Part IV: Extensions, ongoing work

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 32 / 35

Extensions

I Variance reduction techniques (control variates, stratified sampling, etc.)
can be used to further improve the RSF-based estimator

I more importantly, Wilson’s algorithm can be modified to sample not only
one forest at a given q for a cost of order

n +
m

q

but the whole trajectory of (coupled) forests between qmin and qmax; for a
cost of order

n +
m

qmin
+ n log

dmax

qmin

This is very powerful if one wishes to estimate the function
q → Tr

(
(qI + L)−1 q

)
on a given range [qmin, qmax]. A precise comparison

with state-of-the-art will be the object of a future publication.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 33 / 35

Conclusion

I State-of-the-art performance for inverse trace estimation via RSFs

I Computational cost: O
(
|E |
q

)
will probably require multiscale

approximations in small q to become competitive in practice in this range
I Very simple and “natural” algorithm on graphs, VERY low memory

footprint, no need of centralized knowledge of the graph, no preprocessing
I Similar works (some published, some in progress in ANR JCJC GRANOLA):

i/ RSFs for graph Tikhonov regularization, for effective resistance
estimation, for partial spectrum estimation, etc.
Main research question: what is the extent of the information one can
retrieve from a few RSFs?

ii/ other similar DPPs over edges and/or nodes of graphs (hopefully
“Wilson-able”) for similar objectives?

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 34 / 35

More details?

I A journal paper is here (IEEE TSIPN 2021):

https://arxiv.org/pdf/2011.10450
I Conference papers are here:

I (GRETSI 2019):
https://arxiv.org/pdf/1905.02086

I (ICASSP 2020):
https://arxiv.org/pdf/1910.07963

I (EUSIPCO 2022):
https://arxiv.org/pdf/2110.07894

I (GRETSI 2022):
not online yet

I Julia code publicly available
I These slides can be found on my website:

gipsa-lab.fr/∼nicolas.tremblay

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 35 / 35

https://arxiv.org/pdf/2011.10450
https://arxiv.org/pdf/1905.02086
https://arxiv.org/pdf/1910.07963
https://arxiv.org/pdf/2110.07894
http://www.gipsa-lab.fr/~nicolas.tremblay

