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DPPs and USTs

» Consider a connected graph with n nodes and m edges:

X 4 X

> A spanning tree is a subset of edges that i/ are connected, ii/ do not
contain cycles, iii/ span all nodes.

> A graph of size n contains between 1 and n"~? different spanning trees

» A uniform spanning tree (UST) is a spanning tree, drawn uniformly at
random from the set of all spanning trees.

» Classical result: A UST is a (projective) DPP defined over the set of edges

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 2/35



To give you the flavor of this talk

» DPPs can be understood as (weakly) repulsive summaries of a ground set
of elements

> A general ML/SP question is: what information is kept by the sampling
process? What can be estimated about the original set from this summary?
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To give you the flavor of this talk

» DPPs can be understood as (weakly) repulsive summaries of a ground set
of elements

> A general ML/SP question is: what information is kept by the sampling
process? What can be estimated about the original set from this summary?

» Given that USTs (and their generalisation Random Spanning Forests) are
DPPs, the question translates as:

What can we learn about a graph given a collection of USTs

(trivial example: lower bound on maximum degree)
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Graph-based data =

a connectivity structure

possibly a signal on the nodes
(and/or edges)

y = [y17y21y37y4]T € R4
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Different operations on graphs or signals defined on graphs

on graphs
» community detection, un-, semi-, supervised learning
» control of speed of diffusion (information, disease)
» graph simplification (sparsification, node merging, etc.)

» graph visualization

on signals defined on graphs
» Tikhonov/wavelet denoising
» signal compression / sampling
» inpainting / interpolation
» graph filtering (e.g. in GNNs)

+ many other examples from many different fields of research...

—  Some of these operations are based on the Laplacian matrix
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Motivation |. Signal denoising: 1D background
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Motivation |. Signal denoising: 1D background

» Formally, we assume that:

» There is an underlying signal x(t)
» We have noisy observations for a discrete set of time samples:

yi = x(t;) + €
> ¢; ~ N(0,02) (white Gaussian noise)

» We seek to estimate x from the noisy observations y
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Motivation |. Signal denoising: 1D background

» Consider the following estimator (for g > 0)
X = argmin E s (z(t) — y(t:))* + 1 / iz(t“) ’ dt
ToE G 2 2 ), \dt

> 37 (z(t:)) — y(t:))? is a data-fidelity term
> [ (£2z(t))*dt is a smoothness penalty
» g sets the trade-off between data fidelity and smoothness
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Motivation I.

Observations y
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Motivation I.

For a given g > 0
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Motivation I.

For a large ¢ > 0

N. Tremblay & co.

Signal denoising: 1D background
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Motivation I.

For a small g > 0
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Motivation |. Signal denoising: 1D background
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Motivation |. Signal denoising: 1D background

» There is a simple way of estimating the smoothness penalty term when the
observations fall on a regular grid:

n

/n(%z(t))zdt ~ Z(zt —z1) = %ZtLZ

t=2
where L € R™" is the

- discrete Laplace operator.

- equivalently the Laplacian of the path graph:

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 13 /35



Motivation |. Signal denoising: 1D background

» There is a simple way of estimating the smoothness penalty term when the
observations fall on a regular grid:

n

[(Getae = (e - o)’ = 12'Le

t=2
where L € R™" is the

- discrete Laplace operator.

- equivalently the Laplacian of the path graph:
> One obtains the so-called Tikhonov regularisation problem:
. . 1 1
% =argmin q - ||z y|*+ 2Lz,
- 2 2
which exact solution reads

£ = Ky with K = (gl + L) *gl e R™".
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Motivation |. Signal denoising: extension to arbitrary graphs

signal x noisy signal y

The graph Tikhonov regularization problem is similarly defined as

. 1 1
% = argmin q > HZ*.VH2+§Zth.
z

Note that the smoothness penalty term verifies 3z'Lz = >, - Aj(z — z)*.

The analytic solution reads: % =Ky with K= (gl+L) "gl € R™".
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Motivation Il. Semi-supervised learning on graphs

» SSL: given a few pre-labeled nodes of a graph, infer communities

Ny
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. 1 if node i is known to belong to class ¢
ye(i) = .
0 if not.
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» Let y, encode the information a priori known:

. 1 if node i is known to belong to class ¢
ye(i) = .
0 if not.

» A classical SSL algo looks for a labeling function f; that is both (with a
trade-off parameter p > 0):

> smooth on the graph (f," Lf; is small)
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Motivation Il. Semi-supervised learning on graphs

» SSL: given a few pre-labeled nodes of a graph, infer communities

i?

» Let y, encode the information a priori known:

ye(i) =

1 if node i is known to belong to class ¢
0 if not.

» A classical SSL algo looks for a labeling function f; that is both (with a
trade-off parameter p > 0):

> smooth on the graph (f," Lf; is small)
> close to y,

» the larger f;(i), the higher the chance that i belongs to class .
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Motivation Il. Semi-supervised learning on graphs

» The solution may be written (in the usual SSL formalism) as
-1
[ 2 —-1
ff=—"—1|1——D "W .
T2t ( 2+p ) v
» Can be re-written as:

fr = Kys.

where K=(Q+L)""*Qand Q = £D is diagonal and strictly positive.

» This generalizes the previous case where we needed

=Ky with K= (gl+L) gl
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Motivation Ill. Degrees of freedom of the linear smoother K = (Q + L)*lQ

» x = Ky is one instance of the more general class of linear smoothers

» a useful quantity in this context is its so-called effective degrees of
freedom defined as

§=Tr(K)=Tr((Q+L)'Q)

» this quantity is useful for instance for optimal choice of parameter g in
Tikhonov's regularization (using AIC, GCV, etc.)
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Motivation V. Effective resistances

Definition Let LT be the Moore-Penrose pseudo-inverse of L. The effective
resistance of any edge e = (/,j) € £ reads

T T T
re=Li+L}—2Lf >0
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Motivation V. Effective resistances

Definition Let LT be the Moore-Penrose pseudo-inverse of L. The effective
resistance of any edge e = (/,j) € £ reads

_f T T
re=1>L;+ LJ-J- — 2L,-J- > 0.
Property Ve € £, pe x Aere defines a probability distribution over the edges.
What for? For instance: spectral sparsification.

Definition Let € € ]0,1[. Let G be a graph and L its Laplacian. Let H be a
subgraph of G, of same size but hopefully much sparser, and X its Laplacian.
Then H is a e-spectral sparsifier of G if

(1—e LX< (146l
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Motivation V. Effective resistances

Definition Let LT be the Moore-Penrose pseudo-inverse of L. The effective
resistance of any edge e = (/,j) € £ reads

_f T T
re=L;+L;—2L;>0.
Property Ve € £, pe x Aere defines a probability distribution over the edges.
What for? For instance: spectral sparsification.

Definition Let € € ]0,1[. Let G be a graph and L its Laplacian. Let H be a
subgraph of G, of same size but hopefully much sparser, and X its Laplacian.
Then H is a e-spectral sparsifier of G if

(1—e LX< (146l

Theorem Let € € ]0,1[. Sample m edges iid with replacement according to p.
The obtained subgraph (with properly re-weighted edges) is a spectral sparsifier
with high probability provided

m>Q0 (e_znlog n) .
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A (partial) list of Laplacian-based computation problems
Problem 1 Compute the regularized inverse

K=(Q+L)'Q

Q diagonal and positive

Problem 2 Compute the degrees of freedom of the linear smoother K:

§=Tr((Q+L)'Q)
Problem 3 Compute the effective resistance r. = L}L, + LE- = ZLZ- of all edges

Many other L-based problems partial spectral information for spectral
clustering, graph cuts, etc.

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022 19 / 35



In this talk, we will discuss:

Problem Compute the degrees of freedom of the linear smoother K:

§=Tr((Q+L)'Q)

» to simplify, in this talk, we only consider the case where L is the
combinatorial Laplacian of a connected graph and Q = gl (g > 0)
» however, keep in mind that the techniques developed can be extended to:

» any positive diagonal matrix Q
» any choice of Laplacian, e.g., the degree-normalized Laplacian matrix L:

g = (Q+£)71Qy — <Q+ D71/2LD71/2>71 Qy
— p/2 (Ql + L)—l Q/D—l/zy

» in fact, L may even be any diagonally dominant matrix, via a standard trick
involving two graphs

> It so happens that Yigit Pilavci will discuss some other problems (graph
Tikhonov regularisation) this afternoon at the MLSP seminar
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Computational challenges

Goal
Compute § = Tr ((ql + L) 'q) for large graphs (say n > 10°)

Difficulty
Need to compute an inverse, with (naive) cost O(n®)

State-of-the-art
For sparse graphs, a combination of Hutchinson's estimator and iterative
methods such as Preconditioned Conjugate Gradients (effective to approximate
efficiently (gl + L) 'qy given a vector y) is state-of-the-art

In this work
We formulate (very different) Monte Carlo estimators based on random
spanning forests
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Forests?

A graph
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Forests?
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A few notations

Given a rooted spanning forest ¢, we define:
> p(¢) its set of roots (the red nodes)

> the root function: r4(/) is the root of the tree containing node i

N. Tremblay & co. Fast Graph Computations via Random Spanning Forests Lyon, June 2022
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Random forests?

» Consider the following distribution on forests (g > 0):
P = 6) x ¢ T] A
(iee

where Aj; is the weight of the link between nodes i and ;.

» Importantly, sampling from this distribution is efficient (in time roughly
O(|E|/q)) via a variant of Wilson's algorithm.

» The forest obtained, ®g, is called a Random Spanning Forest (RSF)
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Wilson's algorithm for RSF sampling A

1. add A and connect it with all nodes with weight q

2. Start from any node and propagate a random walk
until it reaches A

3. Erase its eventual loops
4. Keep the selected edges and add the last node before A
to the set of roots

5. Start a new random walk from any node not yet
visited and stop when:
- it reaches A
- it reaches any already visited node
6. Erase its eventual loops and keep the remaining edges

7. If it "died" in A, then add the last visited node before A
to the set of roots.

8. Repeat 5-7 until all nodes have been visited

E (number of steps) = Tr [(L + gl) " (D + ql)]

Output: a random spanning forest @,
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Two key properties of RSFs

The matrix K = (L + gl) ™" gl plays a central role in the theory of random
forests. Among other things:

1. the root process p(®,) is a determinantal point process (DPP) with
marginal kernel K, implying for instance:

> Kiji is the probability that node i is a root
» Tr(K) is the expected number of roots

2. the probability that node i is rooted at root j in a random forest ¢, equals

P(rq;q(l-) :_j) = KU
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From random forests to the inverse trace

> Recall our objective: compute Tr(K) = Tr [(gl + L) *ql]
» Recall that Tr (K) is the expected number of roots of a RSF ¢,
» A trivial RSF-based Monte-Carlo estimator of Tr (K) is thus:

» draw N independent RSFs

» compute the average of their number of roots

» it is unbiased and its per-sample variance is ) ! ; (qiii,-)Z
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» it is unbiased and its per-sample variance is ) ! ; 9A;

(g+X)?

> State-of-the-art: Hutchinson's (aka Girard's) estimator:
» draw N independent random vectors x verifying E (xx ") = I,

» compute the average %Z,Nﬂ x " Kx (via sparse Cholesky, PCG or poly
approx to compute Kx)

» unbiased: E [% SV xTKx] =E (x"Kx) =E (Tr (Kxx ")) = Tr(K)

2q2
(q+Xi)?

> per-sample variance in case of Gaussian entries is Y .,
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(g+X)?

> State-of-the-art: Hutchinson's (aka Girard's) estimator:
» draw N independent random vectors x verifying E (xx ") = I,
» compute the average %Z,Nﬂ x " Kx (via sparse Cholesky, PCG or poly
approx to compute Kx)
» unbiased: E [% SV xTKx] =E (x"Kx) =E (Tr (Kxx ")) = Tr(K)

. . . . . n 2q2
> per-sample variance in case of Gaussian entries is > ! iz
» for large/small enough g, RSF’s per-sample variance is better. The precise
interval is spectrum-dependent

» both SOTA and RSF-based estimator run in time O(|€|)
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Inverse trace estimation: RSF-based vs. Hutchinson/Girard, pros and cons

Notable advantages of RSF-estimator:
> very easy to implement (~ 20 lines in Julia)
» minimal memory footprint
» no preprocessing of the graph needed (in fact: no centralized knowledge of
L is needed): only need the ability of running a random walk
Notable disadvantages of RSF-estimator:
» only for diagonally-dominant matrices L and g > 0

» even if theoretical complexities are comparable, the RSF-estimator cannot
take advantage of over-optimized matrix-vector implementations.
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Inverse trace estimation: comparison on a few graphs

» rf RSF-based estimator

» direct uses Julia's backslash operator (calls CHOLMOD)
amg Algebraic Multigrid with Ruge-Stuben coarsening
cg Conjugate Gradient with diagonal preconditioning
cg-amg Conjugate Gradient with AMG preconditioning

Five methods
to compare...

vYyy
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Extensions

» Variance reduction techniques (control variates, stratified sampling, etc.)
can be used to further improve the RSF-based estimator

» more importantly, Wilson's algorithm can be modified to sample not only
one forest at a given q for a cost of order

m
n—+ —
q

but the whole trajectory of (coupled) forests between gmin and gmax; for a

cost of order
m

dmax
+ nlog ——
Gmin Qmin

This is very powerful if one wishes to estimate the function

g — Tr((gl +L)"* q) on a given range [gmin, Gmax]- A precise comparison
with state-of-the-art will be the object of a future publication.

n-+
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Conclusion

» State-of-the-art performance for inverse trace estimation via RSFs

» Computational cost: O (‘—5') will probably require multiscale
approximations in small g to become competitive in practice in this range

» Very simple and “natural” algorithm on graphs, VERY low memory
footprint, no need of centralized knowledge of the graph, no preprocessing
» Similar works (some published, some in progress in ANR JCJC GRANOLA):
i/ RSFs for graph Tikhonov regularization, for effective resistance
estimation, for partial spectrum estimation, etc.
Main research question: what is the extent of the information one can
retrieve from a few RSFs?
ii/ other similar DPPs over edges and/or nodes of graphs (hopefully
“Wilson-able") for similar objectives?
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More details?

> A journal paper is here (IEEE TSIPN 2021):
https://arxiv.org/pdf/2011.10450
» Conference papers are here:
> (GRETSI 2019):
https://arxiv.org/pdf/1905.02086
> (ICASSP 2020):
https://arxiv.org/pdf/1910.07963
> (EUSIPCO 2022):
https://arxiv.org/pdf/2110.07894
> (GRETSI 2022):
not online yet
» Julia code publicly available
» These slides can be found on my website:

gipsa-lab.fr/~nicolas.tremblay
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