
The unreasonable effectiveness of
determinantal processes

Subhro Ghosh
National University of Singapore

Subhro Ghosh National University of Singapore The unreasonable effectiveness of determinantal processes



Unreasonable Effectiveness

E.P. Wigner, The Unreasonable Effectiveness of Mathematics
in the Natural Sciences, Communications on Pure and Applied
Mathematics, 1960; 13:001-14.

Contends that mathematical concepts have applicability that
is often far beyond the context in which they were originally
developed.
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Unreasonable Effectiveness

“The miracle of .. the language of mathematics for the
formulation of the laws of physics is a wonderful gift which we
neither understand nor deserve. We should be grateful for it
and hope that ... it will extend, .. to our pleasure, .. to wide
branches of learning.”
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Constrained systems : I.I.D. and beyond

The most popular model of randomness in science is perhaps
that of Independent and Identically Distributed (I.I.D.)
random variables.

The I.I.D. paradigm has led to ground breaking progress and a
vast body of literature, including many ideas and
methodologies that have become second nature for
applications.

E.g.s include, but are not limited to, the fundamental theories
behind Principal Component Analysis (P.C.A.) and other
dimension reduction techniques, Maximum Likelihood based
methods (M.L.E.), a wide array of information-theoretic
approaches, and so on.
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Constrained systems : I.I.D. and beyond

Though there is scientific interest in exploring beyond the
I.I.D. paradigm, progress mostly involves specific structures
with limited or ‘localised’ dependence - e.g., various kinds of
Markov processes. Also, some results in the direction of
independent but not identically distributed random fields.

In general, lack of independence is largely believed to be an
obstacle or a hindrance to overcome, and many approaches
involve trying to ‘locate’ independence or approximate
independence in the overall dependency structure.

In this talk, we will take a different point of view - namely, try
to exploit dependence structures in stochastic systems in order
to make substantive progress in fundamental learning
problems.
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Constrained Stochastic systems: some natural models

In this talk, we will focus on a significant class of natural
strongly dependent random systems, known as Determinantal
Processes or DPPs.

A DPP is a random set of points that all interact with each
other, and where the interaction is encoded by a kernel.

DPPs are, in a sense, the kernel machine of random point sets.
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Constrained Stochastic systems: some natural models

DPPs are well-motivated by their origins in quantum and
statistical physics.

DPP strtucture arises natrually, e.g. as Slater determinants in
wave-functions for Fermions (following earlier work by
Heisenberg and Dirac)

Connections to a wide interface of physics and mathematics,
including random matrices, random polynomials, interacting
particle systems ...
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Determinantal processes

Any model of a random point set is characterised by its
‘correlation functions’, which are essentially the joint
probabilities of having points at specified locations

If α1, . . . , αm are m fixed locations, then the m-point
correlation function ρm(α1, . . . , αm) is the joint probability
(density) of having points at the locations α1, . . . αm in a
realization of the random point set.

E.g., if the model of random point set is to pick points
independently and uniformly at random from a domain, then
ρm(α1, . . . , αm) = ρm where ρ is the mean density of points
per unit area.
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Determinantal processes

Determinantal processes are models of random point sets that
are parameterised by a kernel function K .

The m-point correlation functions are given by determinants :

ρm(α1, . . . , αm) = Det

 K (α1, α1), . . . . . . K (α1, αm)
. . . . . . . . . . . .

K (αm, α1), . . . . . . K (αm, αm)


Clearly, if αi and αj are the close to each other (in some
feature space) for different i and j , then under mild continuity
assumption on the kernel K , the probability density ρm is very
close to 0.

Thus, a DPP penalizes points for getting too close to each
other, and therefore naturally embodies repulsive interaction
between the points, albeit in a highly non-linear and complex
manner.
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Determinantal Processes

DPPs are, therefore, effective in modelling situations where
the sample points need to be very different from each other.

E.g., in diversity sampling, the population may be represented
by points in some (high dimensional) feature space, and the
kernel K incorporates the proximity between these points in
the feature space, which in turn encodes the ‘similarity’
between different points that we want to sample from.

Recently, DPPs have emerged as a fundamental component of
a rapidly developing learning toolbox based on negative
dependence that, in many applications, shines over
state-of-the-art methods based on statistical independence.
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Gaussian Determinantal Processes

In the analysis of DPPs, a robust parametric model with
naturally interpretable parameter modulation is squarely
lacking.

Compare, e.g., to the well-known exponential family models in
probability, or Exponential Random Graph Models (ERGM)
that are popular in the study of stochastic networks.

To this end, we propose the model of Gaussian
Determinantal Process (GDP), that will be indexed by the
space of positive definite matrices of a given dimension, which
we will call the scattering matrix.

This would in turn be a ‘testing ground’ to understand the
response of the spatial behaviour of the point process to
parameter modulations in the space of scattering matrices.

Connection to Spiked Models of random matrices and Spiked
PCA.

Based on joint work with P. Rigollet.
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Gaussian Determinantal Processes

A DPP is specified by the underlying kernel.

The points of a GDP lives on Rd , and the kernel is simply the
d-dimensional Gaussian density with some positive definite
covariance matrix Σ (which is the scattering matrix
parameterizing the GDP):

K (x , y) =
1

(2π)d/2
√
Det(Σ)

exp

(
−1

2
(x − y)TΣ−1(x − y)

)
.

The mean density of points in a DPP with kernel K is simply
given by K (x , x) - so the mean density of points in GDP is
= 1

(2π)d/2
√

Det(Σ)
.

Our observation consists of the points in a realisation of the
GDP inside a ball of large radius R.
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Parametric modulation in GDP

Our goal is to interpret the stochastic implication of varying
or modulating the parameter Σ in the space Pd of d × d
positive definite matrices.

Note that modulating Σ such that Det(Σ) changes will lead
to a change in the mean density of points, and can be
detected simply by estimating this average density from the
observed points.

We will therefore focus on parametric modulation that leaves
the determinant Det(Σ) invariant - similar to shear mappings
or shear transformations.
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Parametric modulation in GDP

A key family of modulations that we will consider will be in
the form of a Spiked Model in the space Pd .

Formally, for a unit vector u and λ > 0, we will consider

Σ = (1 + λ)uuT + (1 + λ)−
1

d−1 (Id − uuT ).

λ = 0 makes Σ = Id - the ‘isotropic’ model with no directional
bias in the dependency structure of the points.

λ > 0 corresponds to a spiked model that introduces
directional bias in the strength of the dependency structure.
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Parametric modulation in GDP

The dependence (in this case, repulsion) between the points is
much stronger, e.g. much more long-ranged (on the scale
1 + λ), in the spike direction u.

The dependence in the directions orthogonal to the spike is
much weaker, and decouples to almost independent behaviour
at relatively short length scales.
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Parameter estimation in GDP

Let B(t) denotes the Euclidean ball of radius t in Rd , and
|B(t)| be its volume. Let {X1, . . . ,Xn} be the observed data
points. Let r > 0 be a threshold, to be detailed later.

Then

Σ̂ = |B(1)| r
d+2

d + 2
Id −

1

|B(R − r)|
∑

‖Xi−Xj‖<r

(Xi −Xj)(Xi −Xj)
T

is a consistent estimator of Σ.

Bias variance tradeoff leads to optimal choice of
r = Θ(

√
d log n), as n→∞.
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Testing for directionality in GDP

We want to test for directional bias in the dependency
structure of the observed data points, against a null
hypothesis of isotropic dependence.

In terms of the spiked model, this is equivalent to testing for
the presence of a spike.

Theorem (G.-Rigollet)

Based on the test statistic ‖Σ̂‖op, we can detect the spike with
high probability if the spike size λ is above the threshold

λ & d2 logR

(
c
√
d logR

R

)d/2

.

The leading eigenvector of Σ̂ is a consistent estimator of the
direction of the spike.
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Dimension Reduction and Directionality in Data

The problem of dimension reduction is one of the central
problems in the applied mathematics.

It has led to significant methodological progress, e.g. Principal
Component Analysis and its derivatives, the entire suite of
methods involving the Johnson-Lindenstrauss Lemma and
related random projection based techniques, and so on.

Roughly speaking, dimension reduction involves finding a
low-dimensional subspace, or equivalently, a small number of
‘significant directions’, which contains most of the information
about the (high dimensional) data.
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Dimension Reduction and Directionality in Data

Thus, the problem of dimensional reduction and the problem
of detecting directionality in data are closely related.

In P.C.A., we are interested in the directions of maximal
variability, which are obtained by taking the principal
eigen-directions of the empirical covariance matrix of the data.

We may view the problem more generally, where dimension
reduction will be performed by finding the optimal directions
with respect to some other feature (as opposed to variance in
the case of P.C.A.). This is going to be one of the directions
of focus in our talk.

Subhro Ghosh National University of Singapore The unreasonable effectiveness of determinantal processes



Dimension Reduction and Directionality in Data

Thus, the problem of dimensional reduction and the problem
of detecting directionality in data are closely related.

In P.C.A., we are interested in the directions of maximal
variability, which are obtained by taking the principal
eigen-directions of the empirical covariance matrix of the data.

We may view the problem more generally, where dimension
reduction will be performed by finding the optimal directions
with respect to some other feature (as opposed to variance in
the case of P.C.A.). This is going to be one of the directions
of focus in our talk.

Subhro Ghosh National University of Singapore The unreasonable effectiveness of determinantal processes



Dimension Reduction and Directionality in Data

Thus, the problem of dimensional reduction and the problem
of detecting directionality in data are closely related.

In P.C.A., we are interested in the directions of maximal
variability, which are obtained by taking the principal
eigen-directions of the empirical covariance matrix of the data.

We may view the problem more generally, where dimension
reduction will be performed by finding the optimal directions
with respect to some other feature (as opposed to variance in
the case of P.C.A.). This is going to be one of the directions
of focus in our talk.

Subhro Ghosh National University of Singapore The unreasonable effectiveness of determinantal processes



Dimension Reduction

We use the GDP model as an ansatz for proposing a
dimension reduction methodology.

We may compute the quantity Σ̂ for any observed data set in
Rd . We then perform SVD on Σ̂ and project the data points
on to the principal eigen-directions of Σ̂ in order to uncover
low dimensional directional features in the data.
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Dimension Reduction : Fisher’s Iris
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Dimension Reduction : Wisconsin Breast Cancer
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Stochastic Gradient Descent and DPP

Stochastic gradient descent (SGD) is a cornerstone of modern
machine learning.

In large datasets, SGD relies on constructing an unbiased
estimator of the gradient using a small subset of the original
dataset, called a minibatch.

Default minibatch construction involves uniformly sampling a
subset of the desired size.
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Stoch. Grad. Descent, Orthogonal Polynomials and DPP

We contribute an orthogonal polynomial-based DPP paradigm
for minibatch sampling in SGD, and substantiate it with a
robust theoretical foundation.

Our approach leverages the specific data distribution at hand,
which endows it with greater sensitivity and power over
existing data-agnostic methods.

Joint work with R. Bardenet and M. Lin.
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Stoch. Grad. Descent, Orthogonal Polynomials and DPP

We obtain a detailed theoretical analysis of its convergence
properties, interweaving between the discrete data set and the
underlying continuous domain.

We propose gradient estimators whose variance decays
provably faster with the batchsize than under uniform
sampling.

For a large enough batchsize and a fixed budget, DPP
minibatches lead to a smaller bound on the mean square
approximation error than uniform minibatches.
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The SGD minibatch problem

Stochastic Gradient Descent (SGD) is the workhorse of
modern machine learning

Useful in a wide array of optimization scenario, ranging from
maximum likelihood problems of parametric statistics to back
propagation in training deep neural networks, and beyond ....
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The SGD minibatch problem

The fundamental step in a gradient descent approach can be
coded as

θt+1 ← θt − ηt ·

[
1

N
·

N∑
i=1

∇θL(zi , θ)

]
,

where ηt is the step-size

However, for large data sets, computing the empirical average
at each step can be prohibitively expensive.
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The SGD minibatch problem

The fundamental step in stochastic gradient descent can be
coded as

θt+1 ← θt − γtL̂(A, θt)

L̂(A, θt) is an estimate of the full data set gradient
1
N ·
∑N

i=1∇θL(zi , θ)

L̂(A, θt) is based on a relatively small subsample A ⊂ D of
the full data set D.

Such a subsample A is called a minibatch.
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The SGD minibatch problem

A minibatch is a (random) subset A ⊂ D of size |A| = p � N
such that the random variable

ΞA = ΞA(θ) :=
∑
zi∈A

wi∇θL(zi , θ), (1)

for suitable weights (wi ), provides a good approximation for
ΞN = 1

N

∑
zi∈D∇θL(zi , θ).

Natural problem : How to select the random subset A ⊂ D ?
What is the nature of randomness that leads to improved
performance of the SGD algorithm ?
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The impact of randomness

The impact of the randomness of A (equivalently, that of ΞA)
is captured by the following theorem.

Theorem (Moulines-Bach ’11)

For smooth and strongly convex expected loss function, compact
parameter space, an unbiased estimator ΞA for the gradient and
step size γt ∼ t−α for some 0 < α < 1, we have

E‖θt − θ?‖2 ≤ C · σ
2

tα
+O(e−t

α
),

where σ2 = E[‖ΞA(θ?)‖2|D] is the trace of the covariance matrix
of the gradient estimator, evaluated at the true optimizer θ?.

Therefore, the goal is to make σ2 small, as a function of the
batch size p.
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The default choice : select A uniformly at random

The default choice in minibatch selection is to sample A to be
uniformly at random, and take the usual empirical average on
A to construct ΞA.

Sampling p data points with / without replacement,
Poissonian sampling (select each data point to be in A
independently with probability p/N) ...

Unbiased estimate of the variance

σ2(ΞUnif) = OP(p−1).
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Enter DPPs

Our approach : select A according to a DPP to effect variance
reduction.

Our DPP sampler will be tailored to the data distribution,
implemented via Orthogonal Polynomials.
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Multivariate Orthogonal Polynomials

For definiteness, we consider our domain on which the data
points live to be [−1, 1]d .

Multivariate Orthogonal polynomials : consider a reference
measure q(x)dx on [−1, 1]d .

Consider the monomial functions (x1, . . . , xd) 7→ xα1
1 · · · x

αd
d in

the graded lexical order.

Then apply the Gram-Schmidt algorithm in L2(q(x) dx) to
these ordered monomials.

This yields a sequence of orthonormal polynomial functions
(ϕk)k∈N, the multivariate orthonormal polynomials w.r.t. q.
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DPPs based on Multivariate Orthogonal Polynomials

Construct a DPP with the kernel given by the projection

K (x , y) =

p−1∑
k=0

ϕk(x)ϕk(y),

with respect to the background measure q(x)dx .

We obtain a projection DPP with kernel denoted as K
(p)
q ,

referred to as the Multivariate OPE (i.e., Multivariate
Orthogonal Polynomial Ensemble) associated with the
measure q(x)dx .

# of sampled points = rank of the projection = p (always !)
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An OP based minibatch selector for SGD

Let γ̃(z) = 1
Nhd

∑N
i=1 k

(
z−zi
h

)
be a kernel density estimator of

the pdf of the data-generating distribution γ with window size
h > 0.

Let q(x) = q1(x1) . . . qd(xd) be a separable pdf on [−1, 1]d ,
where each qi is positive on [−1, 1].

Let K
(p)
q be the Multivariate OPE kernel with respect to the

measure q.
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A DPP based minibatch selector for SGD

Define a new kernel that factors in γ̃ :

K
(p)
q,γ̃ (x , y) :=

√
q(x)

γ̃(x)
K

(p)
q (x , y)

√
q(y)

γ̃(y)

Both K
(p)
q ,K

(p)
q,γ̃ are projection DPPs on the space [−1, 1]d .

Need : a kernel on D ⊂ [−1, 1]d .

Idea : Simply restrict K
(p)
q,γ̃ to D ! Problem : No longer a

projection (important for variance reduction purposes)

However : K
(p)
q,γ̃ is approximately a rank-p projection with

respect to the uniform distribution on D
Solution : Spectrally round-off K

(p)
q,γ̃ to a rank-p projection K̃.
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A DPP based gradient estimator for SGD

We consider a minibatch A ∼ DPP(K̃, γ̂N), where K̃ is the
projection as obtained above and the background measure γ̂N
is the uniform distribution on D.

Since (K̃, γ̂N) is a projection kernel, |A| = p almost surely.

Define the gradient estimator

ΞA,DPP :=
∑
zi∈A

∇θL(zi , θ)

K̃(zi , zi )
.

E[ΞA,DPP] =
∑N

i=1

(
∇θL(zi ,θ)

K̃(zi ,zi )

)
· K̃(zi , zi ) · 1

N =

1
N

∑N
i=1∇θL(zi , θ)

So, ΞA,DPP is unbiased, as desired.
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Why does ΞA,DPP have reduced fluctuations ?

σ2(ΞA,DPP)

=
1

N2

∑
i ,j

∥∥∥∥∥∇θL(zi , θ)

K̃(zi , zi )
−
∇θL(zj , θ)

K̃(zj , zj)

∥∥∥∥∥
2

2

|K̃(zi , zj)|2 [Projection Kernel]

.M(θ) · 1

p2

∫ ∫
‖z− w‖2

2 |K
(p)
q (z,w)|2dq(z)dq(w) [under regularity]

If ‖z − w‖2
2 was not present, then∫∫

|K (p)
q (z,w)|2dq(z)dq(w) = p implies Var . 1/p, which is

the same as uniform random sampling of A.

However, main contribution to
∫∫
|K (p)

q (z,w)|2dq(z)dq(w)
comes from near the diagonal z = w, which is precisely
suppressed by the term ‖z− w‖2

2.

Use Christoffel-Darboux formula to make this control precise
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Why does ΞA,DPP have reduced fluctuations ?

Obtain

Theorem (Bardenet-G.-Lin)

Var[ΞA,DPP|D] = OP(p−(1+1/d)).

Improvement in exponent of p compared to uniform random
sampling of A !

Near-completion (with R. Bardenet and M. Lin) : a technique
for sampling the gradient estimator directly, without having to
sample the DPP minibatch. Applications to a wide array of
DPP based approaches in machine learning (such as coresets),
spatial statistics ....
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Performance in experiments
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Figure: Summary of the performance of two sampling strategies in SGD.
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