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Framework

Model: n charged particles confined by an external potential in any dimension

Hn(x1, . . . , xn) =
∑
i 6=j

g(xi − xj) + n
n∑

i=1

V (xi ) (H)

Repulsive pair-interaction

Mean-field regime

Confining external potential

Interaction kernel:

g(x) =
1

|x |s max(0, d − 2) ≤ s < d ,

g(x) = − log |x | d = 1, 2.

 fundamental solution for (−∆)
d−s

2 on Rd .
Coulomb gases: s = d − 2 or g(x) = − log |x | for d = 2
External potential V : sufficiently smooth potential such that

lim
|x|→+∞

V (x)

2
− log |x | = +∞ or lim

|x|→+∞
V (x) = +∞

Crystallization Conjecture : appearance of periodic structures for minimizers
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Macroscopic behavior of minimizers

Convergence of minimizers: {(x1, . . . , xn)}n minimizer of Hn

1

n

n∑
i=1

δxi︸ ︷︷ ︸
empirical measure

=
1

n
νn ⇀ µV (in the sense of probability measures)

µV is the unique minimizer over P(Rd) of

I (µ) =

∫∫
Rd×Rd

g(x − y) dµ(x)dµ(y) +

∫
Rd

V (x) dµ(x).

First order expansion of Hn: Hn(x1, . . . , xn) = n2I (µV ) + o(n2).
Remark :

existence and characterization of the equilibrium measure µV (Frostman, 1935)

convergence of minimizers and minima of Hn (Choquet, 1959)

 mean-field behavior of ground states: points distribute themselves macroscopically
according to the probability law µV
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Microscopic behavior of minimizers

Goal: understand the optimal microscopic distribution of points
Idea:

1 expand the Hamiltonian to the next order (Coulomb case : done by Sandier-Serfaty
(d = 2) and Rougerie-Serfaty (d > 2), Riesz case: done by Petrache-Serfaty)

2 blow-up the configurations by the factor n1/d (inverse of the typical distance
between two points)  well-separated point typically with distance O(1)

O(1)

Σ
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x x

O(1)

Σ = supp(µV ) compact with C1 boundary

mV density of µV bounded and sufficiently regular
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Splitting of Hn in the Coulomb case

Write νn =
n∑

i=1

δxi as νn = nµV︸︷︷︸
leading order

+ (νn − nµV )︸ ︷︷ ︸
fluctuations

Insert in the definition of Hn

Hn (x1, . . . , xn) =

∫∫
∆c

g(x − y) dνn(x)dνn(y) + n

∫
V (x) dνn(x)

= n2I (µV ) + 2n
n∑

i=1

ζ(xi ) +

∫∫
∆c

g(x − y) d(νn − nµV )(x)d(νn − nµV )(y)

with ζ =

∫
g(x − y) dµV (x) +

V

2
− c, ζ = 0 on Σ and ζ > 0 on Σc

Define hn :=

∫
g(x − y) d(νn − nµV )(y) so that −∆hn = cd(νn − nµV ). Formally∫∫

∆c

g(x − y) d(νn − nµV )(x)d(νn − nµV )(y) =

∫
hnd(νn − nµV )

=

∫
hn

(
− 1

cd
∆hn

)
≈ 1

cd

∫
|∇hn|2

Problem: ∇hn /∈ L2 → truncation procedure
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Truncation procedure

Given η > 0, define fη(x) = (g(x)− g(η))+ and δ
(η)
0 :=

∆fη
cd

+ δ0.

δ
(η)
0 uniform positive measure of mass 1 on ∂B(0, η)

−∆fη = cd(δ0 − δ(η)
0 )

Truncated potential: hn,η(x) = hn(x)−
n∑

i=1

fη(x − xi )  

−∆hn,η = cd

(
n∑

i=1

δ(η)
xi − nµV

)

→ ”smearing out” each Dirac charge uniformly onto the sphere of radius η centered at
the charge

Lemma

∫∫
∆c

g(x − y) d(νn − nµV )(x)d(νn − nµV )(y) = lim
η→0

(
1

cd

∫
Rd

|∇hn,η|2 − ng(η)

)
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Blow-up and splitting formula

Blow-up: x ′ := n1/dx , m′V (x ′) = mV (x), Σ′ = supp(µ′V ) = n1/dΣ

−∆h′n = cd

(
n∑

i=1

δx′i − µ
′
V

)
and −∆h′n,η = cd

(
n∑

i=1

δ
(η)

x′i
− µ′V

)

Remark : h′n(x ′) = −
(

1

2
log n

)
1d=2 + n2/d−1hn(x).

Proposition (Splitting formula)

For any n ≥ 1, for any configuration of distinct points x1, . . . , xn in Rd , d ≥ 2, the
following identity holds :

Hn (x1, . . . , xn) = n2I (µV ) + 2n
n∑

i=1

ζ(xi )−
(n

2
log n

)
1d=2

+
n1−2/d

cd
lim
η→0

(∫
Rd

|∇h′n,η|2 − ncdg(η)

)
ζ : effective potential which favors configurations where the points xi are in supp(µV )
Goal: Analyze the behavior of the last term as n goes to infinity → definition of the
renormalized energy W
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Renormalized energy

Renormalized energy: total Coulomb interaction energy of an infinite configuration of
points in the whole space in a constant neutralizing background → jellium
Formally,

−∆h′n = cd

(
n∑

i=1

δx′i − µ
′
V

)
−−−−→
n→+∞

−∆h = cd

∑
p∈Λ

Npδp −m


with Λ a discrete set of points in Rd , Np ∈ N∗, and m = mV (0) a positive constant
(which depends on the center of the blow-up).

Admissible electric fields Am: E = ∇h such that

−divE = cd

∑
p∈Λ

δp −m(x)


in Rd for some discrete set Λ ⊂ Rd and m : Rd → R+ a nonnegative density function.

Remarks: We take Np = 1 since we are dealing with minimizers

Truncated electric fields: For any E ∈ Am and any η > 0, let

Eη = E −
∑
p∈Λ

fη(· − p)
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Renormalized energy

Renormalized energy: Let E ∈ Am and η > 0. For any Borel set A ⊂ Rd , we define

Wη(E ,A) =

∫
A

|Eη|2 − cdg(η)

∫
A

∑
p∈Λ

δ(η)
p .

and

W(E) = lim
η→0

lim sup
R→+∞

Wη(E ,KR)

|KR |

where KR = [−R/2,R/2]d .

Known results: minimizers of Hn tend to minimize W after blow-up at scale n1/d around
almost every point in Σ (Sandier-Serfaty, Rougerie-Serfaty and Petrache-Serfaty)

Goal: understand the behavior of minimizers of W

Remarks:

if m is constant min
Am

W is finite and achieved for any d ≥ 2

for d = 2 the triangular lattice is the minimizer over lattices
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Equidistribution of the renormalized energy for Coulomb gases

Theorem ((RN, Serfaty 2015, Petrache, RN 2018))

Let (x1, . . . , xn) be a minimizer of Hn and E ′n = ∇h′n be the vector fields expressed as the
gradient of the potentials of blow-up configurations corresponding to these minimizer.
There exists q ∈]0, 1[ such that for an ∈ Σ′, if K` = an + [−`/2, `/2]d ⊂ Rd and in the

regime where dist(K`(an), ∂Σ′) ≥ nq/d , we have

lim
η→0

lim sup
`→∞

lim sup
n→∞

∣∣∣∣∣Wη(E ′n,K`(an))

|K`|
− 1

|K`|

∫
K`(an)

min
Am′

V
(x′)
W dx ′

∣∣∣∣∣ = 0 (1)

minimizers of Hn tend to minimize W after blow-up at scale n1/d around any point
in Σ (sufficiently far from ∂Σ)

for minimizers of Hn, renormalized energy Wη is equidistributed at the microscopic
scale in an arbitrary hypercube provided that the hypercube is chosen sufficiently far
away from ∂Σ

Question: Can we interchange the renormalization limit η → 0 with the other ones ? Not
easy because of the lack of control on the support of the smeared charges δ(η)

p
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Equidistribution of the renormalized energy for Coulomb gases

Idea of the proof:

screening procedure + bootstrap argument

select hypercubes K with good boundaries  
∫
K

|Eη|2 ≤ C |K |

Problem: Error terms are multiplied by g(η)

Solution: Allow perturbations of the boundary of K`(an) and use charge separation result
for minimizers

Theorem ((Petrache, RN 2018))

Let (x1, . . . , xn) be a minimizer of Hn and E ′n = ∇h′n as before.
There exists q ∈]0, 1[ such that for an ∈ Σ′, if K` = an + [−`/2, `/2]d ⊂ Rd and in the

regime where dist(K`(an), ∂Σ′) ≥ nq/d , there exist sets Γn which can be expressed as
bi-Lipschitz deformations fn : K`(an)→ Γn such that ‖fn − Id‖L∞ ≤ 1 and such that we
have

lim sup
`→∞

lim sup
n→∞

∣∣∣∣∣W(E ′n, Γn)

|Γn|
− 1

|Γn|

∫
Γn

min
Am′

V
(x′)
W dx ′

∣∣∣∣∣ = 0. (2)

Moreover, we may assume that Γn is a hyperrectangle.

Remark: This result has been recently improved by Armstrong-Serfaty.

Simona Rota Nodari 11 / 12



Bound on charge discrepancy for Coulomb gases

Theorem ((RN, Serfaty 2015, Petrache, RN 2018))

Under the same hypotheses as before, consider a regime in which (1) holds. Then letting

ν′n =
n∑

i=1

δx′i ,

we have a finite asymptotic bound of the discrepancy of the ν′n with respect to µ′V as
follows:

lim sup
`→∞

lim sup
n→∞

1

`d−1

∣∣∣∣∣ν′n(K`(a))−
∫
K`(a)

m′V (x) dx

∣∣∣∣∣ <∞

Remarks: Ameur, Ortega-Cerdà prove that

∣∣∣∣∣ν′n(K`(a))−
∫
K`(a)

m′V (x) dx

∣∣∣∣∣ = o(`d)

Perspective: Extend the results to Riesz gases (without ‘too strong’ additional
conditions)
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