Renormalized Energy Equidistribution and Local Charge Balance in Coulomb Systems

Simona Rota Nodari

Laboratoire J.A. Dieudonné, Université Côte d'Azur

dpp-fermions-2022, 8 Juin 2022

Joint works with S. Serfaty and M. Petrache.

Framework

Model: *n* charged particles confined by an external potential in any dimension

$$H_{n}(x_{1},...,x_{n}) = \sum_{i \neq j} g(x_{i} - x_{j}) + n \sum_{i=1}^{n} V(x_{i})$$
(H)
Repulsive pair-interaction
Interaction kernel:

$$g(x) = \frac{1}{|x|^{s}} \max(0, d - 2) \le s < d,$$

$$g(x) = -\log |x| \qquad d = 1, 2.$$

$$\Rightarrow \text{ fundamental solution for } (-\Delta)^{\frac{d-s}{2}} \text{ on } \mathbb{R}^{d}.$$
Coulomb gases: $s = d - 2 \text{ or } g(x) = -\log |x| \text{ for } d = 2$
External potential V : sufficiently smooth potential such that

$$\lim_{|x| \to +\infty} \frac{V(x)}{2} - \log |x| = +\infty \text{ or } \lim_{|x| \to +\infty} V(x) = +\infty$$

Crystallization Conjecture : appearance of periodic structures for minimizers

Macroscopic behavior of minimizers

Convergence of minimizers: $\{(x_1, \ldots, x_n)\}_n$ minimizer of H_n

$$\underbrace{\frac{1}{n}\sum_{i=1}^{n}\delta_{x_{i}}}_{\text{empirical measure}} = \frac{1}{n}\nu_{n} \rightharpoonup \mu_{V} \quad \text{(in the sense of probability measures)}$$

• μ_V is the unique minimizer over $\mathcal{P}(\mathbb{R}^d)$ of

$$I(\mu) = \iint_{\mathbb{R}^d \times \mathbb{R}^d} g(x-y) \, d\mu(x) d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

First order expansion of H_n : $H_n(x_1, ..., x_n) = n^2 I(\mu_V) + o(n^2)$. Remark :

- existence and characterization of the equilibrium measure μ_V (Frostman, 1935)
- convergence of minimizers and minima of H_n (Choquet, 1959)

 \rightsquigarrow mean-field behavior of ground states: points distribute themselves macroscopically according to the probability law μ_V

Microscopic behavior of minimizers

Goal: understand the optimal microscopic distribution of points Idea:

- expand the Hamiltonian to the next order (Coulomb case : done by Sandier-Serfaty (d = 2) and Rougerie-Serfaty (d > 2), Riesz case: done by Petrache-Serfaty)
- Is blow-up the configurations by the factor n^{1/d} (inverse of the typical distance between two points) → well-separated point typically with distance O(1)

• $\Sigma = \operatorname{supp}(\mu_V)$ compact with \mathcal{C}^1 boundary

• m_V density of μ_V bounded and sufficiently regular

Splitting of H_n in the Coulomb case

• Write
$$\nu_n = \sum_{i=1}^n \delta_{x_i}$$
 as $\nu_n = \underbrace{n\mu_V}_{\text{leading order}} + \underbrace{(\nu_n - n\mu_V)}_{\text{fluctuations}}$

• Insert in the definition of H_n

$$H_n(x_1,...,x_n) = \iint_{\Delta^c} g(x-y) \, d\nu_n(x) d\nu_n(y) + n \int V(x) \, d\nu_n(x)$$

= $n^2 I(\mu_V) + 2n \sum_{i=1}^n \zeta(x_i) + \iint_{\Delta^c} g(x-y) \, d(\nu_n - n\mu_V)(x) d(\nu_n - n\mu_V)(y)$

with
$$\zeta = \int g(x-y) d\mu_V(x) + \frac{V}{2} - c$$
, $\zeta = 0$ on Σ and $\zeta > 0$ on Σ^c
• Define $h_n := \int g(x-y) d(\nu_n - n\mu_V)(y)$ so that $-\Delta h_n = c_d(\nu_n - n\mu_V)$. Formally

$$\iint_{\Delta^c} g(x-y) d(\nu_n - n\mu_V)(x) d(\nu_n - n\mu_V)(y) = \int h_n d(\nu_n - n\mu_V)$$
$$= \int h_n \left(-\frac{1}{c_d} \Delta h_n \right) \approx \frac{1}{c_d} \int |\nabla h_n|^2$$

Problem: $\nabla h_n \notin L^2 \rightarrow \text{truncation procedure}$

Truncation procedure

Given $\eta > 0$, define $f_{\eta}(x) = (g(x) - g(\eta))_+$ and $\delta_0^{(\eta)} := \frac{\Delta f_{\eta}}{c_d} + \delta_0$.

• $\delta_0^{(\eta)}$ uniform positive measure of mass 1 on $\partial B(0,\eta)$

$$-\Delta f_{\eta} = c_d (\delta_0 - \delta_0^{(\eta)})$$

Truncated potential: $h_{n,\eta}(x) = h_n(x) - \sum_{i=1}^n f_{\eta}(x - x_i) \rightsquigarrow$

$$-\Delta h_{n,\eta} = c_d \left(\sum_{i=1}^n \delta_{x_i}^{(\eta)} - n\mu_V\right)$$

 \rightarrow "smearing out" each Dirac charge uniformly onto the sphere of radius η centered at the charge

Lemma

$$\iint_{\Delta^c} g(x-y) d(\nu_n - n\mu_V)(x) d(\nu_n - n\mu_V)(y) = \lim_{\eta \to 0} \left(\frac{1}{c_d} \int_{\mathbb{R}^d} |\nabla h_{n,\eta}|^2 - ng(\eta) \right)$$

Blow-up and splitting formula

Blow-up:
$$x' := n^{1/d} x$$
, $m'_V(x') = m_V(x)$, $\Sigma' = \operatorname{supp}(\mu'_V) = n^{1/d} \Sigma$
 $-\Delta h'_n = c_d \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_V \right)$ and $-\Delta h'_{n,\eta} = c_d \left(\sum_{i=1}^n \delta_{x'_i}^{(\eta)} - \mu'_V \right)$
Remark : $h'_n(x') = -\left(\frac{1}{2} \log n \right) \mathbf{1}_{d=2} + n^{2/d-1} h_n(x).$

Proposition (Splitting formula)

For any $n \ge 1$, for any configuration of distinct points x_1, \ldots, x_n in \mathbb{R}^d , $d \ge 2$, the following identity holds :

$$H_n(x_1,\ldots,x_n) = n^2 I(\mu_V) + 2n \sum_{i=1}^n \zeta(x_i) - \left(\frac{n}{2}\log n\right) \mathbf{1}_{d=2}$$
$$+ \frac{n^{1-2/d}}{c_d} \lim_{\eta \to 0} \left(\int_{\mathbb{R}^d} |\nabla h'_{n,\eta}|^2 - nc_d g(\eta) \right)$$

 ζ : effective potential which favors configurations where the points x_i are in $\operatorname{supp}(\mu_V)$ Goal: Analyze the behavior of the last term as n goes to infinity \rightarrow definition of the renormalized energy \mathcal{W}

Renormalized energy

Renormalized energy: total Coulomb interaction energy of an infinite configuration of points in the whole space in a constant neutralizing background \rightarrow jellium Formally,

$$-\Delta h'_n = c_d \left(\sum_{i=1}^n \delta_{x'_i} - \mu'_V \right) \xrightarrow[n \to +\infty]{} -\Delta h = c_d \left(\sum_{p \in \Lambda} N_p \delta_p - m \right)$$

with Λ a discrete set of points in \mathbb{R}^d , $N_p \in \mathbb{N}^*$, and $m = m_V(0)$ a positive constant (which depends on the center of the blow-up).

Admissible electric fields A_m : $E = \nabla h$ such that

$$-\mathrm{div} \boldsymbol{E} = c_d \left(\sum_{\boldsymbol{p} \in \Lambda} \delta_{\boldsymbol{p}} - \boldsymbol{m}(\boldsymbol{x}) \right)$$

in \mathbb{R}^d for some discrete set $\Lambda \subset \mathbb{R}^d$ and $m : \mathbb{R}^d \to \mathbb{R}_+$ a nonnegative density function. Remarks: We take $N_p = 1$ since we are dealing with minimizers Truncated electric fields: For any $E \in \mathcal{A}_m$ and any $\eta > 0$, let

$$E_{\eta} = E - \sum_{p \in \Lambda} f_{\eta}(\cdot - p)$$

Renormalized energy

Renormalized energy: Let $E \in A_m$ and $\eta > 0$. For any Borel set $A \subset \mathbb{R}^d$, we define

$$\mathcal{W}_{\eta}(\boldsymbol{E},\boldsymbol{A}) = \int_{\boldsymbol{A}} |\boldsymbol{E}_{\eta}|^2 - c_d \boldsymbol{g}(\eta) \int_{\boldsymbol{A}} \sum_{\boldsymbol{p} \in \Lambda} \delta_{\boldsymbol{p}}^{(\eta)}.$$

and

$$\mathcal{W}(E) = \lim_{\eta \to 0} \limsup_{R \to +\infty} \frac{\mathcal{W}_{\eta}(E, K_R)}{|K_R|}$$

where $K_R = [-R/2, R/2]^d$.

Known results: minimizers of H_n tend to minimize W after blow-up at scale $n^{1/d}$ around almost every point in Σ (Sandier-Serfaty, Rougerie-Serfaty and Petrache-Serfaty)

Goal: understand the behavior of minimizers of ${\mathcal W}$

Remarks:

- if m is constant $\min_{\mathcal{A}_m} \mathcal{W}$ is finite and achieved for any $d \geq 2$
- for d = 2 the triangular lattice is the minimizer over lattices

Theorem ((RN, Serfaty 2015, Petrache, RN 2018))

Let (x_1, \ldots, x_n) be a minimizer of H_n and $E'_n = \nabla h'_n$ be the vector fields expressed as the gradient of the potentials of blow-up configurations corresponding to these minimizer. There exists $q \in]0, 1[$ such that for $a_n \in \Sigma'$, if $K_\ell = a_n + [-\ell/2, \ell/2]^d \subset \mathbb{R}^d$ and in the regime where $\operatorname{dist}(K_\ell(a_n), \partial \Sigma') \ge n^{q/d}$, we have

$$\lim_{\eta \to 0} \limsup_{\ell \to \infty} \limsup_{n \to \infty} \left| \frac{\mathcal{W}_{\eta}(E'_{n}, K_{\ell}(a_{n}))}{|K_{\ell}|} - \frac{1}{|K_{\ell}|} \int_{K_{\ell}(a_{n})} \min_{\mathcal{A}_{m'_{V}(x')}} \mathcal{W} \, dx' \right| = 0 \tag{1}$$

- minimizers of H_n tend to minimize \mathcal{W} after blow-up at scale $n^{1/d}$ around any point in Σ (sufficiently far from $\partial \Sigma$)
- for minimizers of H_n , renormalized energy W_η is equidistributed at the microscopic scale in an arbitrary hypercube provided that the hypercube is chosen sufficiently far away from $\partial \Sigma$

Question: Can we interchange the renormalization limit $\eta \to 0$ with the other ones ? Not easy because of the lack of control on the support of the smeared charges $\delta_p^{(\eta)}$

Equidistribution of the renormalized energy for Coulomb gases

Idea of the proof:

- screening procedure + bootstrap argument
- select hypercubes K with good boundaries $\rightsquigarrow \int_{K} |E_{\eta}|^2 \leq C|K|$

Problem: Error terms are multiplied by $g(\eta)$

Solution: Allow perturbations of the boundary of $K_{\ell}(a_n)$ and use charge separation result for minimizers

Theorem ((Petrache, RN 2018))

Let (x_1, \ldots, x_n) be a minimizer of H_n and $E'_n = \nabla h'_n$ as before. There exists $q \in]0, 1[$ such that for $a_n \in \Sigma'$, if $K_\ell = a_n + [-\ell/2, \ell/2]^d \subset \mathbb{R}^d$ and in the regime where $\operatorname{dist}(K_\ell(a_n), \partial \Sigma') \ge n^{q/d}$, there exist sets Γ_n which can be expressed as bi-Lipschitz deformations $f_n : K_\ell(a_n) \to \Gamma_n$ such that $\|f_n - \operatorname{Id}\|_{L^{\infty}} \le 1$ and such that we have

$$\limsup_{\ell \to \infty} \limsup_{n \to \infty} \left| \frac{\mathcal{W}(E'_n, \Gamma_n)}{|\Gamma_n|} - \frac{1}{|\Gamma_n|} \int_{\Gamma_n} \min_{\mathcal{A}_{m'_V(x')}} \mathcal{W} \, dx' \right| = 0.$$
(2)

Moreover, we may assume that Γ_n is a hyperrectangle.

Remark: This result has been recently improved by Armstrong-Serfaty.

Bound on charge discrepancy for Coulomb gases

Theorem ((RN, Serfaty 2015, Petrache, RN 2018))

Under the same hypotheses as before, consider a regime in which (1) holds. Then letting

$$\nu'_n = \sum_{i=1}^n \delta_{x'_i}$$

we have a finite asymptotic bound of the discrepancy of the ν'_n with respect to μ'_V as follows:

$$\limsup_{\ell\to\infty}\limsup_{n\to\infty}\limsup_{n\to\infty}\frac{1}{\ell^{d-1}}\left|\nu_n'(K_\ell(a))-\int_{K_\ell(a)}m_V'(x)\,dx\right|<\infty$$

Remarks: Ameur, Ortega-Cerdà prove that $\left|\nu'_n(K_\ell(a)) - \int_{K_\ell(a)} m'_V(x) \, dx\right| = o(\ell^d)$

Perspective: Extend the results to Riesz gases (without 'too strong' additional conditions)