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Quantum mechanics/quantum statistics

Many-body non-relativistic quantum mechanics in R¢

Action of many-body Schrédinger Hamiltionian on L2(R?)
S AV S e
1<i<j<N

Add symmetry : indistinguishable particles — quantum statistics

Two possible classes for fundamental particles

\VN(Xl,...,X,',...,Xj,...,XN) = \UN(X17...,Xj,...,X,',,..,XN) Bosons
\UN(Xl,...,X,',...,X_,',...,XN) = 7\UN(X1,.,.,Xj,...,X,',...,XN) Fermions
Bosons, work on L2,,,(R™N) = Qeym L*(RY)

Fermions, work on L2.,,,,(R) = ®.cym L2(RY)

This talk: how to change quantum statistics by playing with magnetic

fields in 2D.
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Magnetic fields, change of gauge (in 2D)
External magnetic field B(x) € R, vector potential A(x) € R?
curl A = 61A2 — 82A1 =B

Change canonical momentum p = —iVy to pa = —iVx + A

Schrédinger operator becomes

Z (—iVx + A( xJ)) + V(x;)) + Z w(xi — X;)

Jj=1 1<i<j<N

Gauge invariance: joint change of wave-function/vector potential

N
Wy = Wy [[¥) and A > A— Vo

j=t

Indeed, in density/phase reprensation ¢ = \/ﬁeid’

(i, (Y + AY? /IV\/I +/p|V<z>+A|

= in 2D, one can switch between bosonic and fermionic statistics.



Switching between bosonic and fermionic statistics

» Many-body vector potential and magnetic field (Aharonov-Bohm flux)
AG) =S BRI ) 20,
k#j ke#j

> Many-body phase factor (arg = angle of a vector)

P (x1,...,xn) = Z arg(x;j — x«)

1<j<k<N

> If Wy is bosonic, ®y = €1 Wy is fermionic and
N N R
<‘~|J/\/7 Z —ij\UN> = <¢N7 Z (—iij + A(Xj)) ¢N>
j=1 j=1

2D bosons +» 2D fermions with attached (integer) magnetic flux
(and vice-versa)
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Emergent fractional statistics/anyons

What if the attached flux is fractional 7 Leinaas-Myrheim, Wilczek,
Goldin-Menikoff-Sharp 77-82 invent ANYONS

Pick any a € R and set
An(x) = az |x Xk|2 B(xj) = 27raZ(5xek
k#j
Many-body phase factor (arg = angle of a vector)

Polx1, . xn) =a > arg(x — xk)

1<j<k<N
If Wy is bosonic/fermionic, set
by = e“"a\ll,v

<¢N7 Z _AXJ¢N> B <\UN7 Z (_ivxj - Aa(xj))2 ‘UN>

j=1
FORMALLY, &y has exotic exchange phase
DN (XLy ooy Xiyeeoy Xy ey XN) = eim‘d)/\/(xl,..,,XJ‘,...,X,',...,XN)

attaching non-integer magnetic flux < realization of non-standard
quantum statistics



Attaching magnetic flux: quantum Hall physics

Main ingredients (for the original effect in Gallium-Arsenide heterostructures)
» A gas of electrons trapped in a 2D plane
» A strong perpendicular magnetic field b
» The Pauli principle and/or interparticle repulsion

Usual approximation

» All particles forced to ground eigenspace of one-body kinetic energy
(fiV - be‘)2
» Lowest Landaul Level in symmetric gauge
LLL := {w € L*(R?),4(x) = f(z)efg‘z‘z, f analytic}

> Replace L3 (R*) by @1, LLL
» Family of Laughlin states (1983): with m odd integer

W(m)(zl,...7zN):cm H (Zi_Zj)meig‘zf‘z
1<i<j<N

» m = 1: free fermions, locally filled Landau level

» m > 1: account for interactions in a partially filled Landau level



Facts in quantum Hall physics

> Excitations/impurities in Laughlin-like states

N K
\Ilgg)(zl,...,z;\/):\Il(m)(zl,.. )HH i — ak)
-1

Jj=1k

ai,...,ax location of QUASI-HOLES
> Are the effective charge carriers (Laughlin 83)

v

Carry charge 1/m (Laughlin 83, Saminadayar-Glattli-Jin-Etienne 97)

> Have anyon statistics 1/m (Halperin, Arovas-Schrieffer-Wilcek 84,
Bartolomei-et al-Féve, Nakamura-et al-Manfra 20)

Smence »

a e
o s DOICW™ s
°c simsTis

Probes of such behavior ? Mathematical results in this direction ?



Thought experiment in bath-tracers system

» N fermions in the LLL (bath), n quantum impurities of charge g (tracers)
» Joint Hilbert space ™" = [*(R*") ® LLL®asym/
» Joint Hamiltonian with strong repulsive interactions, large g > 0

N n n
2
. 1
Hogon ::gZZW(Xk __yj)+2 (—1Vyj — qby; ) +...

k=1 j=1 j=1
> Natural trial state “cancels” interactions (w,z = y, x in complex notation)

N

Vo(w;z) = HH —z)P H (zc — 2 mHe blzl?/2

j=1 k=1 1<k<e<N k=1

Statement (Lundholm-NR 16)
Large b = N limit. Let A*™*(y;) the total vector potential

2 1
At (y, ::_<q_g>by;_p7 (i =y
(J) m J ‘}G*Y/‘Q

2
(fivyj - qbyf) wd,] = 2[1% + /Rzn |(=iVy, + A" (1)) ¢\2 + Errors

/IRZ("+N)




Mathematical challenges

1. Prove energy estimate rigorously (appropriate smallness of Errors)

2. Consider contact/delta interactions w = & (makes sense on $"®V). Is the
trial state a quasi-mode ?

3. Optimality of the trial state: depends on the FQH-spectral gap conjecture
(work by Nachtergaele-Warzel-Young)

This talk: deal with 1 in the special case m = p = 1.

Wo(w;z) := (y)c(w) HH(mg — z) T G-z [[e "=

j=1 k=1 1<k<t<N
> Bath = free fermions in LLL. Scale b = N (no loss)
Q) 2 2 Nz
U (zy,...,zn)| =q H |zi — zj|°e
1<i<j<N
» Law for eigenvalues of random matrices from Ginibre's ensemble.

» Moments of associated characteristic polynomial

/RZN ﬁﬁ(w — ) \w“)(a,...,zN)

j=1 k=1

2



Statistics transmutation

» Turn bosons into fermions (and vice-versa)

O,y = [ € | 90, ym)

1<i<j<n

> Set b = N, fix k large enough. Droplet: extension of the fermionic bath

n log N
Do = { (s yn) ER?: |y <1k ;év }
» No merging set
log N
75 = {0 o) € Do yi =yl 2 2my [ 225}

Theorem (Lambert-Lundholm-NR, 22)
Let ® have support in Z. Assume ’$(y)' < Clyi — yjl-
n 2
(=i, — by ) Wo| =26+ /

./J;LZ(M»N) JR2n

1/2
+(log N)® 2 (log N)*/2 / . 1\ g2
+0 (/s v ) o e |(<i9,, = (a = 1)oy;") |

(<iv), = (g 1)by;") 6‘2




[llustration: equal charges, bosonic tracers

» Joint Hamiltonian, smooth potential W

,,@N 7g2260(xk7yj +Z(71Vy] qb)/jl)2+W(y17...,yn)

k=1 j=1

on j7)n+N _ Lgym(RZn) ® LLL®asymN

» Effective Hamiltonian for tracers

Heff — Z_ij + Wy, ..., ¥n)
j=1

» Fermionic ground state energy (Do disk of radius «)

E®(n) :=inf {(Un|H§‘“f Un), Us € H&(DQL/ |Un?2 =1, U, anti—symmetric}
Dy,

Corollary (Lambert-Lundholm-NR 22)

Set g =1 and let E(n @® N) be the lowest eigenvalue of Hygn. Fix o < 1. We
have

3
E(n& N) < 2nb + ET(n) + C, ('°gNN)

in the limit b = N — co.



Emerging potentials and the plasma analogy

Direct/lengthy calculation (probably folklore in adiabatic theory)

Lol o) s = (55, o = 4)of 4| o1

Using LLL properties (analyticity)

1 -
EAWJ log ¢ %(w)

Aj(w) = %Vj‘,} log c72(w) Vi(w) =

c(w) = L? normalization constant

2

n N N
cw) = / HH(VVJ - z) H (zx — ze He 3lad®/2 dz
e k=1

j=1 k=1 1<k<t<N

Partition function of Gibbs ensemble for fictitious 2D Coulomb system

wu(z) = ﬁ exp (—bH(w; z)) probability measure for all w

N

Hwiz) = |z +260 3 Iog%—}—%_lZZIog P

j=1 1<i<j<N ! j=1 k=1



Screening in the 2D one-component plasma

» In the regime of interest, there should be screening in the plasma
» Local charge neutrality

N n

tot 1
= E Oz E ow, — —1 ~0
4 < z; + p w; p D(0,R)

> Free energy satisfies (completing a square + neglecting entropy)

F(w) = —b"'log Z(w) = 2b™ " log c(w)

: 2 -1 1
— i|m—2 log—— + C.
J-E:;'WJ‘ P % Tw—wl

1<i<j<N

R

where C does not depend on w.
» Differentiating yields the desired expressions
Issue: Validity and precision of screening heuristics far from obvious in

general plasmas (Bauerschmidt-Bourgade-Nikula-Yau, Leblé-Serfaty,
Armstrong-Serfaty, Leblé 2015-2021+...)



Using the determinantal structure

» Ginibre correlation kernel/LLL projector
O b= 1x) 2
Kn(z,x) := Z ﬁzjx’e
0<j<N

P Interest in the characteristic polynomial lead to

Theorem (G. Lambert + other authors)
For any w € C" with wy # - - - # w,, we have

n blw;|?
(n+N)(n+N—1) — | e
— ot —1) oY (n+N-1) HJ—I det [Knin(wi, w))]

c(w)2=b
(w) n! |A(w)|2 nxn

with the Vandermonde determinant.

Aw) = [T (w—w)

1<i<j<n

» Proof: reduced density matrices of free fermions, Wick’s theorem.
» Use: reduce to control derivatives of

o6 (gt (o, )] )



Correlation kernel

M(w) := [7TK,,+N(W,‘, VVJ)] T(w) :=7"b" " det M(w)

mxm

Goal: T ~ 1 for large N =0

» Jacobi's formula for the derivatives. Control of
Ou; log T(w) = Tr (M(w)_IOW].M(w))

Ay, log T(w) = 4Tr (M(w)flAWjM(w))

() PO MO )

» Correlation kernel for large N
Kz, w) = KO(z,w) = e 8 (1l s1wi*-2e7)
m
Kz, w)] = Zemtlel
T

» Hence, for separated w;, w;

M(w) ~ N~ x ( Identity matrix )



Dealing with tracer encounters

Single quasi-holes merging: wi ~ w» but all other points “far away”

With M3_, ~ Identity
_ Myp V
v= ("))

Schur’'s complement formula

1

Ouw logT(w) =Tr [ —— ———
1 108 (W) r <M12 _ VM;},, V*

O (M12 - VM;_lnv*)>

Explicit calculations to handle contributions from M2

Multiple tracer encounters/merging: global rough bounds from integral
formulae for emerging potentials e.g.

o =m((1)( L7670 )

Schur again for T(w, z).
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Conclusions

Unique to 2D quantum mechanics: one can represent bosons as fermions
using gauge freedom, and vice-versa

Does not seem a very good idea for calculations, but suggests funny
mechanisms using magnetic flux attachment

Impurities in quantum-Hall systems couple peculiarly to magnetic fields
Can lead to modified effective charge and statistics transmutation

We rigorously proved that natural trial state exhibits such an effect
Much remains to be done to investigate emergence of trial state

Main prospect: the same type of mechanism leads to exotic quantum
statistics (anyons)

In that case, even rigorously computing with trial state seems challenging
(non-integrable classical 2D Coulomb system, $-ensemble)

Thank you for your attention !



