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Motivation

Many scientific fields use time-frequency representations
Usually they look at spectrograms that can easily be visualized
and offer an intuitive interpretation of the time-frequency
content of a signal
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Motivation

Anyone interested in point processes will immediately wonder
about the many dark dots
Only recently researchers began to analyze the mathematical
properties of this point process
To introduce randomness and indeed obtain a point process
and not just a point pattern, the first obvious choice is to
consider white noise as signal
Even this “simple” case is not yet fully understood
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Motivation

There are three classes of point patterns that directly emerge
from the study of white noise
The zeros of the short-time Fourier transform (STFT) of white
noise
The local extrema of the STFT of white noise
The intersection of the STFT of white noise with another
complex-valued function
All these cases can be reduced to finding zeros of different
random STFTs
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Short-Time Fourier Transform

Window function h ∈ L2(R)
Function (or signal) x ∈ L2(R)
The short-time Fourier transform (STFT) of x with respect to
window h is

Fh
x (u, v) =

∫
R

x(s)h(s − u)e−2πivsds,

for all (u, v) ∈ R2

We can reinterpret the pair (u, v) as a complex number
w = u + iv
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White Noise

Heuristically, complex white noise is
A random signal N on R
For each time t the random variable N (t) is a complex
Gaussian random variable
For different times t1 and t2 the random variables N (t1) and
N (t2) are independent

Mathematically, these properties have some issues...
We can define it in a weak sense, i.e., make sense of integrals

⟨N , x⟩ =
∫
R
N (s)x(s)ds
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White Noise

Specifically, ⟨N , x⟩ is for each signal x ∈ L2(R) a complex
Gaussian random variable with zero mean and variance ∥x∥2

Furthermore, for orthogonal x1 and x2, we have independence
of ⟨N , x1⟩ and ⟨N , x2⟩, i.e.,

E
[
⟨N , x1⟩⟨N , x2⟩

]
= 0

Covariance structure

E
[
⟨N , x1⟩⟨N , x2⟩

]
= ⟨x2, x1⟩
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STFT of White Noise

For fixed u and v the STFT corresponds to the linear functional

Fh
x (u, v) = ⟨x,Φ(u, v)h⟩,

where Φ(u, v)h denotes the time-frequency shift

Φ(u, v)h(t) = e2πivth(t − u), t ∈ R.

Define the STFT of white noise as Fh
N (u, v) = ⟨N ,Φ(u, v)h⟩

For w1,w2 ∈ C, the covariance is

E
[
Fh
N (u1, v1)Fh

N (u2, v2)
]
= ⟨Φ(u2, v2)h,Φ(u1, v1)h⟩

G. Koliander (ARI, ÖAW) PP in TF 2.6.2022 12 / 36



Covariance Structure

Defining F(w) := e−πiuvFh
N
(
u,−v

)
the covariance structure

simplifies to

E
[
F(w1)F(w2)

]
= e−πiu1v1eπiu2v2⟨Φ(u2,−v2)h,Φ(u1,−v1)h⟩

= e−πiu1v1eπiu2v2

∫
e−2πiv2sh(s − u2)e−2πiv1sh(s − u1)ds

= e−πiu1v1eπiu2v2

∫
h(s)h(s − (u1 − u2))e−2πiv2(s+u2)+2πiv1(s+u2)ds

= eπi(−u1v1−u2v2+2u2v1)

∫
h(s)h(s − (u1 − u2))e−2πi(v2−v1)sds

= eπi((u1−u2)(v2−v1)+u2v1−u1v2)Fh
h
(
u1 − u2,−(v1 − v2)

)
= eπiℑ(w1w2)Ah

(
u1 − u2,−(v1 − v2)

)
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Gaussian Weyl-Heisenberg Function

We say F : C → C is a Gaussian Weyl-Heisenberg function
(GWHF) if:
For any w1, . . . ,wn ∈ C, (F(w1), . . . ,F(wn)) is a normally
distributed complex random vector.
F(w) is circularly symmetric, i.e., F ∼ eiθF, for all θ ∈ R
The stochastics of F are invariant under twisted shifts

F(w) 7→ eπiℑ(wζ) · F(w − ζ), ζ ∈ C.
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General Assumptions

For convenience, we will abbreviate Ah(u,−v) = H(w)

Covariance structure is given by

E
[
F(w1) · F(w2)

]
= eπiℑ(w1w̄2)H(w1 − w2)

Positive semi-definiteness of the covariance kernel implies(
H(wk − wj) · eπiℑ(wkwj)

)
j,k=1,...,n

≥ 0 for all w1, . . . ,wn ∈ C

Since H is up to a constant of modulus one an ambiguity
function, we have |H(0)| = ∥h∥2 > 0 and normalize H(0) = 1

For the same reason |H(w)| < |H(0)|
Furthermore, we assume H ∈ C2 and that almost every
realization of F is C2(R2)
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Point Processes

The zero set of a GWHF is a random set of points, a so-called
point process
The most elegant way to describe point processes is as
random measures, in our case

ZF :=
∑

w∈C,F(w)=0

δw ,

where δw denotes the Dirac measure at w
Benefits over viewing point processes as random sets:

No problem to have the same point twice
Additive structure

∑
w∈C, F(w)=0 δw is easier to work with than⋃

w∈C, F(w)=0{w}
Generalization to weighted point processes is straightforward
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Moment Measures

Similar to moments of a random variable, moment measures
give an intuitive characterization of a point process
First moment measure gives the expected number of points in
a domain

µ1(E) = E
[ ∑

w∈C,F(w)=0

δw(E)
]

= E
[
#
{

w ∈ E : F(w) = 0
}]

Radon-Nikodym derivative ρ1(w) w.r.t. Lebesgue measure is
called first intensity
Higher moment measures describe interactions between
points (e.g., repulsion or attraction) and deviations from the
first moment measure
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Zeros of GWHF

Theorem (First intensity of zero sets)
Let F be a GWHF with twisted kernel H satisfying the standing
assumptions. Then ZF is a stationary random measure with first
intensity:

ρ1 =
1

2π
∆H + 2π2√
∆H + π2

,

where

∆H := det

(
−H(2,0)(0)+

(
H(1,0)(0)

)2
−H(1,1)(0)−πi+H(1,0)(0)H(0,1)(0)

−H(1,1)(0)+πi+H(1,0)(0)H(0,1)(0) −H(0,2)(0)+
(

H(0,1)(0)
)2

)
In addition, ∆H ≥ 0, and therefore ρ1 ≥ 1.
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Kac-Rice Formula

Starting point: Kac-Rice formula

ρ1(w) = E
[
|JacF(w)|

∣∣F(w) = 0
]

pF(w)(0)

where pF(w) is the probability density function of F(w)

Conditional expectation can be well-defined because(
F(w),F(1,0)(w),F(0,1)(w)

)
is a Gaussian vector

JacF(w) = −ℑ
[
F(1,0)(w) · F(0,1)(w)

]
We have to calculate expectations E

[
F(1,0)(w1)F(w2)

]
, etc.
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Conditional Expectation

(X,Y) circularly symmetric Gaussian random vector in Cn+m

with covariance matrix

Cov[(X,Y)] =
[

A B
B∗ C

]
,

For any locally bounded h : Cn → R

E
[
h(X)

∣∣Y = 0
]
= E

[
h(Z)

]
Here,

Cov[Z] = A − BC−1B∗.
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First Intensity Calculation

First intensity simplifies to

ρ1(w) =
1
π
E
[∣∣ℑ[Z1Z2

]∣∣]
Covariance of Z is

Ω =

(
−H(2,0)(0)+

(
H(1,0)(0)

)2
−H(1,1)(0)−πi+H(1,0)(0)H(0,1)(0)

−H(1,1)(0)+πi+H(1,0)(0)H(0,1)(0) −H(0,2)(0)+
(

H(0,1)(0)
)2

)
Note independence of w

Absolute mixed moments of Gaussians are more difficult than
expected
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First Intensity Calculation

Have to calculate

πρ1 =
1

π2∆H

∫
C2

|ℑ(w1w2)|e−(w1,w2)
∗Ω−1(w1,w2)dA(w1)dA(w2)

Use the integration trick

|x| = 1
π

∫ +∞

−∞
(1 − cos(xt))

dt
t2 =

1
π
ℜ
(∫ +∞

−∞

(
1 − eitx) dt

t2

)
,

And generalized Gaussian normalization

1
π2

∫
C2

e−(w1,w2)
∗ Ω−1 (w1,w2)eitℑ(w1w̄2)dA(w1) dA(w2)

=
1

det
(
Ω−1 + t

2

(
0 1
−1 0

))
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Zeros of GWHF

Theorem (First intensity of zero sets)
Let F be a GWHF with twisted kernel H satisfying the standing
assumptions. Then ZF is a stationary random measure with first
intensity:

ρ1 =
1

2π
∆H + 2π2√
∆H + π2

,

where

∆H := det

(
−H(2,0)(0)+

(
H(1,0)(0)

)2
−H(1,1)(0)−πi+H(1,0)(0)H(0,1)(0)

−H(1,1)(0)+πi+H(1,0)(0)H(0,1)(0) −H(0,2)(0)+
(

H(0,1)(0)
)2

)
In addition, ∆H ≥ 0, and therefore ρ1 ≥ 1.
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Back to STFT

Recall that H(w) = e−πiuvFh
h(u,−v)

Theorem
Zero set of STFT of complex white noise with window h, ∥h∥2 = 1,
has first intensity

ρ1,h =
4(c2 − c2

1)c3 − 4c2c2
4 − 4c2

5 − 8c1c4c5 + 1

4
√

(c2 − c2
1)c3 − c2c2

4 − c2
5 − 2c1c4c5

where

c1 :=

∫
R

t |h(t)|2dt, c2 :=

∫
R

t2|h(t)|2dt, c3 :=

∫
R
|h′(t)|2dt,

c4 := −i
∫
R

h(t)h′(t)dt, c5 := ℑ
(∫

R
th(t)h′(t)dt

)
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Back to STFT

Theorem
Zero set of STFT of complex white noise with real window h,
∥h∥2 = 1, has first intensity

ρ1,h =
4(c2 − c2

1)c3 + 1

4
√
(c2 − c2

1)c3

where

c1 :=

∫
R

t |h(t)|2dt, c2 :=

∫
R

t2|h(t)|2dt, c3 :=

∫
R
|h′(t)|2dt
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Uncertainty Principle

Theorem
The minimal value of ρ1,h is 1, and it is attained exactly when h = g
is a generalized Gaussian, i.e.,

g(t) =
λ√
σ

e−
π
σ2 [(t−x0)

2+i(ξ0·t+ξ1·t2)]

with σ > 0, λ ∈ C, |λ| = 21/4, x0, ξ0, ξ1 ∈ R.
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Second Moment Measure?

Calculating E
[
(ZF(E))2

]
is of interest to analyze the expected

deviation from ρ1

Leads to something like

E
[
|JacF(z) JacF(w)|

∣∣F(z) = F(w) = 0
]

Requires the Gaussian vector(
F(z),F(1,0)(z),F(0,1)(z),F(w),F(1,0)(w),F(0,1)(w)

)
Managed to derive the conditional distribution
Calculation of the absolute mixed fourth moment is still an
open problem
Even asymptotic results E → C would be interesting
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Charged Zeros

Associate with each zero z the sign κz = sgn(JacF(z)) of the
Jacobian at the zero
Define the charged point process

Zκ
F :=

∑
z∈C,F(z)=0

κz · δz .

Theorem (First intensity of charged zeros)

Let F be a GWHF with twisted kernel H satisfying the standing
assumptions. Then the random signed measure Zκ

F has first
intensity ρκ1 = 1, i.e.,

E
[ ∑

w∈E,F(w)=0

κw

]
= |E|, E ⊆ C Borel set.
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Proof: Charged Intensity

Generalization of Kac-Rice to include weights yields

ρκ1 (w) =
1
π
E
[
−ℑ

[
Z1Z2

]]
Covariance structure of Z already known
Imaginary part of a certain mixed (non-absolute!) moment

Ω =

(
−H(2,0)(0)+

(
H(1,0)(0)

)2
−H(1,1)(0)−πi+H(1,0)(0)H(0,1)(0)

−H(1,1)(0)+πi+H(1,0)(0)H(0,1)(0) −H(0,2)(0)+
(

H(0,1)(0)
)2

)
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Second Moment Measure

Semi-charged two-point intensity τκ2 : C → R

τκ2 (z − w) =
E
[
JacF(w1) JacF(w2)

∣∣F(w1) = F(w2) = 0
]

π2
(
1 − |H(w1 − w2)|2

)
τκ2 is well-defined and serves as density for

E
[(
Zκ

F (E)
)2 −ZF(E)

]
=

∫
E×E

τκ2 (w1 − w2) dA(w1)dA(w2)
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Second Moment Measure

Second moments in the charged case require calculation of

E
[
JacF(w1) JacF(w2)

∣∣F(w1) = F(w2) = 0
]

In the end, “only” a mixed fourth moment of a Gaussian
Calculation based on Wick’s formula for Gaussian vector v with
covariance Ω

E
[
ℑ(Z1Z̄2) · ℑ(Z3Z̄4)

]
= −1

2
ℜ
[
Ω1,2Ω3,4 +Ω1,4Ω3,2 − Ω2,1Ω3,4 − Ω2,4Ω3,1

]
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Hyperuniformity of Charge

Theorem
Let F be a GWHF with twisted kernel H satisfying the standing
assumptions. Assume further that H(z) = P

(
|z|2

)
and

sup
r≥0

(
|P(r)|+ |P′(r)|+ |P′′(r)|

)
r2 < ∞.

Then

Var
[
Zκ

F (BR(w))
]
≤ CR, R > 0,

and

1
R Var

[
Zκ

F (BR(w))
]
→

∫ ∞

0

2r2P′(r2)2

1 − P(r2)2 dr, as R → ∞
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STFT with Charges

Expected charge is
independent of the window
For Gaussian window, there
are only positive charges
In other cases, additional
positive and negative
charges have to “cancel”
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