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Overview

« Modes and states in optics
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Light

Solution to Maxwell’s equations
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Modes in free space J\/L LKB

| What is an “optical mode™? |

g Jeff Lundeen @LundeenOttawa - Nov 3

Please reply if you have any insight or opinion.

| keep confusing myself about this. There seem to be many different but
subtly related definitions.
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Modes in free space l\/\ LKB

Optical modes form an orthonormal basis of solutions to Maxwell’s equations

Jeff Lundeen @LundeenOttawa - Nov 3
; * urL I' O &, | What is an “optical mode™? |
2 Please reply if you have any insight or opinion.
]. a | keep confusing myself about this. There seem to be many different but
A ) _ O subtly related definitions.
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Modes in free space L / Vug (r, £)dPr = 6, l\/\ LKB

Optical modes form an orthonormal basis of solutions to Maxwell’s equations

@ Jeff Lundeen @LundeenOttawa - Nov 3
; ufl; O & | What is an “optical mode”? |
2 Please reply if you have any insight or opinion.
]. a | keep confusing myself about this. There seem to be many different but
A ) _ O subtly related definitions.
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Modes in free space L / e, )dPr = 0, I\/L LKB

Optical modes form an orthonormal basis of solutions to Maxwell’s equations

n Jeff Lundeen @LundeenOttawa - Nov 3
; * ufl; r ] t —_— O \?5/ | What is an “optical mode”? |
2 Please reply if you have any insight or opinion.
]. a | keep confusing myself about this. There seem to be many different but
A u . I' t — O subtly related definitions.
1 ,
62 8t2 Q 4 1 27 QO 126 T

Light is then described as a superposition of optical modes

EM) (r Z Ejau,(r,t)



Modes in free space L / e, )dPr = 0, l\/L LKB

Optical modes form an orthonormal basis of solutions to Maxwell’s equations

h Jeff Lundeen @LundeenOttawa - Nov 3
; * ufl; r ] t —_— O \?% | What is an “optical mode”? |
2 Please reply if you have any insight or opinion.
]. a | keep confusing myself about this. There seem to be many different but
A u . I' t — O subtly related definitions.
1 ,
62 atQ Q a4 M 27 QO 126 N

Light is then described as a superposition of optical modes

EH_) Z E; Oég u] t) Complex

amplitude

>



Modes in free space L / (r, 8)d%r = &, 1 \ \ LKB
Optical modes form an orthonormal basis of solutions to Maxwell’s equations

V-u(r,t) =0

1 o?
(2= G ) it =0 78

Light is then described as a superposition of optical modes

EH_) Z E; 04] ug ) Complex

amplitude

>
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Kinds of modes: Spectral )\/k LKB

EM) (¢ Zs a;u;(z/c—t)v(r)
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Frequency domain Hermite-Gauss
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Kinds of modes: Spectral I\/\ LKB

EM) (¢ Zs a;u;(z/c—t)v(r)
/ \,

Frequency domain Hermite-Gauss
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Kinds of modes: Spatial

E(+)
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Two light beams in
image plane
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Kinds of modes: Spatial

(+)

/

4

Two light beams in
image plane

:\/\LKB
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Kinds of modes: Spatial I\/\ LKB

EM) (¢ 25 aju;(r)v(z,t)

Guided modes (will play a crucial role in Boson Sampling)
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Light is then described as a superposition of optical modes

EH—) Z E; Od] u] ) Complex

amplitude
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Light is then described as a superposition of optical modes

EH—) Z E; Oé] u] ) Complex

amplitude

>

The analytical signal is related to the real electric field is given by

E(r,t) = EM) (r,t) + (E(“)* (r, 1)



Modes in free space /\/\ LKB

Light is then described as a superposition of optical modes

EH_) Z E; 043 u] ) Complex

, amplitude

The analytical signal is related to the real electric field is given by
E(r,t) = EM) (r,t) + (E<+>) (r, 1)

The energy in the light is given by

H = %O/ d°r [\E(r,t)\Z + 02|B(r,t)|2}
1%



Modes in free space

Light is then described as a superposition of optical modes

ECH (x Ze o (1)

The energy in the light is given by

H = %)/ d°r [‘E(rvt)P —|—02|B(I‘,t)|2}
|%4



Modes in free space

Light is then described as a superposition of optical modes
(+)
E 5 saiu;(r,t)
The energy in the light is given by
€0 3 2 2 2
H = o / d’r [|E(r,t)|* + ¢*|B(r, t)|?)
|4

By using Maxwell’s equations and some Fourier-style analysis, we find

H =20V ) [E]*]ay]?

J



Modes in free space

Light is then described as a superposition of optical modes
(+)
E 5 saiu;(r,t)
The energy in the light is given by
€0 3 2 2 2
H = o / d’r [|E(r,t)|* + ¢*|B(r, t)|?)
|4

By using Maxwell’s equations and some Fourier-style analysis, we find

H =20V ) [E]*]ay]?

j  Energy per mode



Into the quantum realm

Light is then described as a superposition of optical modes

B (x Zs o juy(r

Hamiltonian of the systems

H =2V ) |E|a;/



Into the quantum realm
Light is then described as a superposition of optical modes

A

E(_I_) (I‘, t) — Z gj&j u; (I‘, t)
j=1

Hamiltonian of the systems

H = 2€0V Z|gj|2|&j‘2
J



Into the quantum realm

Light is then described as a superposition of optical modes
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Hamiltonian of the systems
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Into the quantum realm

Light is then described as a superposition of optical modes

E(+)(r, t) = Zéfj&juj(r, t)
=1

Hamiltonian of the systems
2 ~
_EQVE €] aaj—kaj T)

Satisfy canonical commutation reIatlon



Into the quantum realm

Light is then described as a superposition of optical modes

E(_I_) (I‘, t) — Z gj&j u; (I‘, t)
=1

Hamiltonian of the systems \ /

— eOVZ|8 ( al 54 +a3AT)

Satisfy canonical commutation reIatlon ‘ >




Modes and photons l\/L LKB
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Light is then described as a superposition of optical modes

E(_I_) (I‘, t) — Z gj&j u; (I‘, t) \\/
j=1




Modes and photons /\/\ LKB

Light is then described as a superposition of optical modes

E(—'_) (I‘, t) — Z ngALj u; (I‘, t) \\/
j=1

&j is the annihilation operator of a photon in mode 1, (I’, t)




Modes and photons /\/\ LKB

Light is then described as a superposition of optical modes

E(—'_) (I‘, t) — Z ngALj u; (I‘, t) \\/
j=1

&j is the annihilation operator of a photon in mode 1, (I’, t)

Bases are not unique, we could describe the same light with a
different mode basis

EMH) (r,t) = Z E;b;v;(r,t)

J



Modes and photons l\/\ LKB

Light is then described as a superposition of optical modes

\
B Zga]uj t) ) B (r, Zgbvj —/

How do we change mode basis?




Modes and photons l\/L LKB

Light is then described as a superposition of optical modes

B (r ZE a;u;(r,t) 4mmmp E)(r,t) = ZEijvj(r,t) N—
J

How do we change mode basis?

Z 1
Ujkuk‘ ) with U]k: — V/ u;f(r,t)vk(r,t)dSr
|%4

Because u-modes form a basis




Modes and photons l\/L LKB

Light is then described as a superposition of optical modes

. \
B (r ZE a;u;(r,t) 4mmmp E)(r,t) = Zé’jijj(r,t) N—
J

How do we change mode basis?

| 1 [
ZUjkuk with Ujk:: V/Vuj(r,t)vk(r,t)d?’r

Because u-modes form a basis

=) =) Ujib;
)




Modes and photons l\/L LKB

Light is then described as a superposition of optical modes

. \
B (r ZE a;u;(r,t) 4mmmp E)(r,t) = Zé’jijj(r,t) N—
J

How do we change mode basis?

| 1 [
ZUjkuk with Ujk:: V/Vuj(r,t)vk(r,t)d?’r

Because u-modes form a basis

) O = ZUjkBj ) 5} = Z Uk
k

J




The beamsplitter

How do we change mode basis?

v,(r,t) = Z Ujrug(r,t)

k
. 1
with Ujk — V/ u;(r,t)vk(r,t)d?)r
|4

Example
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The beamsplitter

How do we change mode basis?

v,(r,t) = Z Ujrug(r,t)

k
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Example
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v,(r,t) = Z Ujrug(r,t)




Modes and photons

Superpositions of modes form new modes

vi(r,t) =) Ujpug(r,t) |
k

More generally speaking, we can define for every mode f(r7 t)




Modes and photons

Superpositions of modes form new modes

vi(r,t) =) Ujpug(r,t) |
k

More generally speaking, we can define for every mode f(r7 t)




Modes and photons l\/\ LKB

Superpositions of modes form new modes

v,(r,t) = Z Ujrug(r,t) \\y

More generally speaking, we can define for every mode f(r7 t)

1

o' (f) = kadl with fr = v /Vu,";(r,t)f(r,t)dgr




Modes and photons

For every mode f(r7 t) we have an creation operator

al(f) = kadli
k

Furthermore, we find that &(f) — Z f]:;&k




Modes and photons I\/L LKB
/

For every mode f(r7 t) we have an creation operator \

(1) = Y fal =
k

Furthermore, we find that &(f) — Z f]:&k
k

This leads to the general canonical commutation relation

1

a(f).at(e)] = o /V £ (r, t)g(r, )



Modes and photons

For every mode f(r7 t) we have an creation operator

al(f) = ka&;re
k

Furthermore, we find that &(f) — Z f]:&k
k

This leads to the general canonical commutation relation

1
T

/\/LLKB

Just a short-hand

a(f),al(9)] = — /V £ (r, Dg(r, ) = (f. )

notation



Modes and sampling problems J\A LKB

Changes of mode basis are a brick in a typical sampling problem

33333
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Changes of mode basis are a brick in a typical sampling problem

Key idea: we prepare a state in one mode basis and we
measure it in a different mode basis
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Key idea: we prepare a state in one mode basis and we
measure it in a different mode basis



Modes and sampling problems J\/L LKB

Changes of mode basis are a brick in a typical sampling problem

What remains to
be understood is
the states

... and the
measurement

Lyreeeee.

weevves |

Key idea: we prepare a state in one mode basis and we
measure it in a different mode basis



Quantum states /\/\ LKB

Quantum states determine the measurement statistics of observables

generated by
{a'(f)|f € modes}, {a(f)|f € modes}, 1
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Quantum states determine the measurement statistics of observables

generated by
{a'(f)|f € modes}, {a(f)|f € modes}, 1

States are fully characterized by their correlation functions

@ (f1)...a" (fm)a(frms1) - .- a(fa))



Quantum states I\/L LKB

Quantum states determine the measurement statistics of observables

generated by
{a'(f)|f € modes}, {a(f)|f € modes}, 1

States are fully characterized by their correlation functions

@ (f1)...a" (fm)a(frms1) - .- a(fa))

Example: the vacuum can be defined as the state with

<&T(f1) - 'dT(fm)d(fm+1) - &(fn» =0
\V/manaflwﬂafn



Quantum states f\;’fL LKB

Quantum states determine the measurement statistics of observables

generated by
{a'(f)|f € modes}, {a(f)|f € modes}, 1

States are fully characterized by their correlation functions

@ (f1)...a" (fm)a(frms1) - .- a(fa))

Example: the vacuum can be defined as the state with

\V/manafh"wfn



Fock states I\/L LKB

<O‘dT(f1) .o &T(fm)&(fm—l—l) .o d(fn)‘(» = (



Fock states

<O‘&T(f1) .o &T(fm)&(fm—l—l) .o d(fn)‘0> = (

The vacuum is the ground state of our ensemble of
guantum harmonic oscillators



Fock states l\/L LKB
<O‘dT(f1)&T(fm)d(fm—l—l)d(fn)‘o> =0 @@
The vacuum is the ground state of our ensemble of @ E

guantum harmonic oscillators

Fock states are created by adding a finite number of photons to the system in

arbitrary modesf,, ..., f_

®) = it () (£)0)



Fock states /\/\ LKB

<O‘&T(f1)&T(fm)&(fm—l—l)d(fn)‘o> =0 @@
The vacuum is the ground state of our ensemble of @ E

guantum harmonic oscillators

Fock states are created by adding a finite number of photons to the system in
arbitrary modesf,, ..., f_

®) = it () (£)0)

The full Hilbert space of the bosonic system!is generated by the closure of the
span of these states.

1to be exact, they generate the Fock representation of the algebra of observables
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measure it in a different mode basis




Modes and photons J\A LKB

Key idea: we prepare a state in one mode basis and we
measure it in a different mode basis

The measurement?
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A key observable is the number operator in mode f

n(f) = a'(fa(f)
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A key observable is the number operator in mode f

n(f) = a'(fa(f)

It “counts” the number of photons in the mode f and its eigenvectors are
Fock states of the form 1

ﬁ”(f)” 0)



Number of photons

/\/LLKB

A key observable is the number operator in mode f

n(f) =a'(f)

a

It “counts” the number of photons in the mode f and its eigenvectors are

Fock states of the form

1

Vn!

! (f)" 10)

(Use fa(f),al (1)) = (££)=1 )

to show

ﬁ(f)\/%fﬂ(f)” 0) = nﬁaw)" 0)

Furthermore, when (f, g) —

AF)—al (g)" |0) =

" /




Number of photons /\/kL KB

A key observable is the number operator in mode f

n(f) = a'(fa(f)

It “counts” the number of photons in the mode f and its eigenvectors are
Fock states of the form

1 ~ n Use [4(f),al —(f,f)=1
L atpymioy (B el = =1\

\/n! to show
A 1 ~ n _ 1 ~ n
— 0) = n— 0
The number operator for the full system is ”(f)ma SEY RV )10
Furthermore, when (f, g) —
N = Z n uk ) 1
n(f)—=a'(g)" 10) =0

/
k Some mode basis K n'! /




Number of photons

A key observable is the number operator in mode f

n(f) = a'(fa(f)
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Number of photons

A key observable is the number operator in mode f

n(f) = a'(fa(f)

It is narrowly related to the energy in the systems
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Number of photons

A key observable is the number operator in mode f

n(f) = a'(fa(f)

It is narrowly related to the energy in the systems

= 2¢V Z|£ 2 ([



Number of photons l\/LL KB

A key observable is the number operator in mode f

n(f) =a'(f)a(f)

It is narrowly related to the energy in the systems

_ZEOVZ|5 2 ([ ;)i (e])]+%>

Fock states are energy eigenstates and measuring the energy in a specific
mode projects on Fock states




Modes and photons J\/L LKB

Prepare a state in one mode basis and we measure it in a different mode basis

Our states are of the form ¢ (e1) ... &T(en) 0)

Detection events with at most one photon per detector <()‘ &(@;1) o &(6/- )
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Modes and photons

A/\ LKB

Prepare a state in one mode basis and we measure it in a different mode basis

Our states are of the form ¢ (e1) ... &T(en) 0)

Detection events with at most one photon per detector <()‘ &((331) o &(6/- )

Recap

‘Input mode basis )
 {ew(r )k =1,...,m} |
‘Output mode basis

- e e e e e e e e e e e e o e e

————————————————————

)
)

—
—_—

Q09O

r | | ] | | | |
I
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« Boson sampling
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that we started with photon in input modes 1, ..., n?



Transfer probability J\/L LKB

333335

What is the probability to find photons in output modes j,, ..., j,, given
that we started with photon in input modes 1, ..., n?

Calculate the overlap with the measurement state to find

A A A A 2
P, ,...€; ler,...en) = [(0]a(e],)...a(e] )al(er)...a'(e,) |0)]



Transfer probability J\A LKB

333335

What is the probability to find photons in output modes j,, ..., j,, given
that we started with photon in input modes 1, ..., n?

P(e),...€; ler,...en) = [(0]a(e;,)...a(e] )a

—

(e1)...aT(en) |0)

‘ 2



Transfer probability J\/L LKB

333335

What is the probability to find photons in output modes j,, ..., j,, given
that we started with photon in input modes 1, ..., n?

P(e),...€;5 ler,...en) = |[(0]ale] ). ..a(e] )a

—

(e1) ...t (en) [0)]

Use canonical commutation relation [a(e} ), a'(e;)] = %/ e/ (r,t)e (r, t)d’r
1%



Transfer probability J\/L LKB

333335

What is the probability to find photons in output modes j,, ..., j,, given
that we started with photon in input modes 1, ..., n?

P(e),...€;5 ler,...en) = |[(0]ale] ). ..a(e] )a

—

(e1)...a"(en) 0)

Use canonical commutation relation [a(e} ), a'(e;)] = %/ e/ (r,t)e (r, t)d’r
1%



Transfer probability

0000000

333335

What is the probability to find photons in output modes j,, ..., j,, given

that we started with photon in input modes 1, ..., n?
P(e),...€;5 ler,...en) = [(0]ale],) .. ale

Use canonical commutation relation [&(eﬁc), @T(el)] —

+ Wick contractions

/
In
1

7

—

)a'(er)...al(en) ]O}‘
/Ve;*(r,t)el(r,t)dgr



Example: n =1 J\/\L KB

Use canonical
commutation relation

[aer,), a'(e)] = Ug

33333

What is the probability to find photons in output modes j, given that
we started with photon in input modes 17

P(e)ler) = | (0] a(e})alt (e1) |0)|°



Example: n =1 J\/LL KB

Use canonical
commutation relation

[aer,), a'(e)] = Ug

0000000

33333

What is the probability to find photons in output modes j, given that
we started with photon in input modes 17

P(e)|er) = |0 a(e))a' (er) |0)
— (0] [a' (ex)ale}) + U] 0)]

‘ 2




Example: n =1 J\/LL KB

Use canonical
commutation relation

[aer,), a'(e)] = Ug

0000000

33333

What is the probability to find photons in output modes j, given that
we started with photon in input modes 17

P(ejler) = [(0]a(ej)at (1) |0)

— (0] [tmr¥es) + U1 ] |0)]°

‘ 2




Example: n =1 J\/LL KB

Use canonical
commutation relation

[aer,), a'(e)] = Ug

0000000

33333

What is the probability to find photons in output modes j, given that
we started with photon in input modes 17

P(ejler) = [(0]a(ej)at (1) |0)

J

— (0] [tmr¥es) + U1 ] |0)]°

2

‘ 2




Classical particles J\/L LKB

Use canonical
commutation relation

[aer,), a'(e)] = Ug

S33I39

What is the probability to find classical particles in output modes j,, ..., j,,,
given that we started with classical particles in input modes 1, ..., n?



Classical particles J\/\ LKB

Use canonical
commutation relation

[aer,), a'(e)] = Ug

S33I39

What is the probability to find classical particles in output modes j,, ..., j.,
given that we started with classical particles in input modes 1, ..., n?
We assume that the detectors do not see the difference between these particles

P(e;-l, . e;n €1,...6n) = Z P(e}l\eg(l)) . P(e;n|ea(n))
ocES,



Classical particles J\/\ LKB

Use canonical
commutation relation

[aer,), a'(e)] = Ug

S33I39

What is the probability to find classical particles in output modes j,, ..., j.,
given that we started with classical particles in input modes 1, ..., n?
We assume that the detectors do not see the difference between these particles

P(e;-l, . e;n €1,...6n) = Z P(e}l\eg(l)) . P(e;n|ea(n))
ocES,

= |Uio|” - [Ujnotm|

ocEsS,



Example: n =2 J\/LLKB

Use canonical
commutation relation

a(er), a’(e)] = Uni

00009000

S33I3°

What is the probability to find photons in output modes j, and j,, given
that we started with photon in input modes 1 and 2?

P(e),. € ler, e2) = |{0] a(el, (el )af (er)at (e2) 10)]°
— (0l a(e}, ) at (er)alel, ) + Uyailaf (e2) [0)]
— {0l (e, )t (ex)aa(e), )it (e2) 10) + Uyt (0] (e, it (e2) 10)]°
= (0] a(e],)at (er)a(es, )al (e2) |O>+U321U312|
= |Uj,1 (0] a(e),)at (e2) 0) + U1 Ujyo|

2
= |U;j,1Ujy2 + Ujy1Uj, 2



Example: simple Hong-Ou-Mandel

What is the probability to find photons in output modes 1 and 2, given
that we started with photon in input modes 1 and 2?
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Example: simple Hong-Ou-Mandel l\/kL KB

What is the probability to find photons in output modes 1 and 2, given
that we started with photon in input modes 1 and 2?

P(e}, e5ler, ea) = |Ur1Usg U21U12\2

= ()

We never detect one photon in each output mode, they always bunch together
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333335

a(ey),at (er)] = Uk
What is the probability to find photons in output modes j,, ..., j,, given

that we started with photon in input modes 1, ..., n?

) ) ) ) 2
P ,...€; ler,...en) = [(0la(e;,) ... a(e] Yal(er)...a'(e,) |0)]

‘ P(es,....€} ler,...,en) = |prem Usub‘Z
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Hardness of boson Sampling [Aaronson & Arkhipov arXiv:1011.3245] «/\ L K B

Why are people so excited about boson sampling?

2
/ /

P(es,,...,€; le1,...,en) = \prem Usub‘
Permanents are typically hard (#P) to calculate

Second idea from Aaronson and Arkhipov: sampling from any distribution that is

sufficiently close to P(?,7'1» o e; le1,...e,) IS computationally hard.

Conjecture 6 (Permanent Anti-Concentration Conjecture) There exists a polynomial p such
that for all m and § > 0,

Pr |Per (X)| < V!

< 4.
X~N(0,1)1Xm p(n,1/9)
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High-efficiency multiphoton boson sampling

Hui Wang'#%, Yu He'?%, Yu-Huai Li***, Zu-En Su'?, Bo Li'*}, He-Liang Huang'?, Xing Ding*?,
Ming-Cheng Chen'?, Chang Liu'?, Jian Qin'?, Jin-Peng Li*2, Yu-Ming He'23, Christian Schneider’,
Martin Kamp?®, Cheng-Zhi Peng'?, Sven Héfling'*4, Chao-Yang Lu'?* and Jian-Wei Pan'?*

A\ LKB

ldea:
On demand photons from a

guantum dot source

Up to five photons, but
should be scalable

How many photons do we
need for this to be hard?

Clifford and Clifford: “let’s say around 50” [1706.01260]
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Distinguishability

When and how do quantum particles become classical?

P(e},,....€e; le1r,...,en) = Z Us)jy - - Us(n)in

ocesS,,

The devil is in the details...

We assume implicitly that our detector is perfectly

1
Uk,l — _/ eZ(rat eg(rat)}igr
Vv

We need a better model for our detector...

F resolving the mode of the particle. Including in the
time frequency domain... =

0 08 16 24 32 40 48 56
t (us)
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Let us assume some structure on the modes of the input photons

er(r,t) =|eg(x, y)}gbk(z/c — t)]——» W
=T

... and for the detectors
eh(r.) = e o,y e )

S 1 (on ()

Ly

6(t — 7"
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Detectors that do not resolve temporal structure

R R R R 2
P(ef,....€¢; ler,....en) =| Y [(0la(e],) .. (e}, )al(er) ... at(en)]0)]

[1,.ln, _J
Y

Z Ujioq)---Uj, U(R)Uj*lo’(l) U* o’ (n)

o,0' €S,

Note the dappearance of terms U ko-(k) Uj*ko-/ (k;)
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Now let’s impose our temporal structure

Z Ujio(tyU Jka’(k)
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Now let’s impose our temporal structure [ Recall Z (1)) ) () = 6(r — T,)]

[ L
Z UJkO'(k) ]ka’(k) ]ka(k) ko‘(k') Z wa(k)an](:) 77§k )7 o’ (k))
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Now let’s impose our temporal structure RecaII Z (1)) <zk>
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When and how do quantum particles become classical?

P(G;l, I} e;'n |617 I} en) — Z (wa(l)a wa’(l)) <o (wa(n)a 2pa’(n))Z/{jla(l) .- -ujno(n) ;10(1) “e ;<no'(n)
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= Mo Uyom|
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oA’ €Sy —. .. ..

Distinguishability leads to
some form of decoherence
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1 (1 1
U‘ﬁl—l

P(e), ehler, ea) = [Un1 | |Uaz|? + [Una | |Uar |? + | (101, 102) | [UniUoallisly, 4 UnallorUs Uy
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Efficient Classical Algorithm for Boson Sampling with Partially
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Classically simulating near-term partially-distinguishable and

lossy boson sampling

Alexandra E Moylett®"23 (), Raul Garcia-Patrén®, Jelmer J Renema® and Peter S Turner
Published 26 November 2019 « © 2019 |IOP Publishing Ltd
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FIG. 2. Approximated runtime in terms of number of op-
erations to simulate n-photon Boson Sampling with chosen
values of n and z up to 10% error (e = 0.1) via state (solid)
or point (dashed) truncation.
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Summary

Multimode light is in essence a set of quantum harmonic

oscillators ) (+)
ZE ajuj

Boson sampling boils down to preparing a Fock states in on
mode basis and measuring it in another

2
Simulating boson sampling is computationally hard \prem Usub‘

Temporal structure of the photons destroys this
hardness
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