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Modes in free space

Light is then described as a superposition of optical modes

The energy in the light is given by

By using Maxwell’s equations and some Fourier-style analysis, we find

Energy per mode
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For every mode                  we have an creation operator 

Furthermore, we find that 

This leads to the general canonical commutation relation

Just a short-hand 
notation
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Modes and sampling problems

U

Changes of mode basis are a brick in a typical sampling problem

What remains to 
be understood is 
the states

… and the 
measurement

Key idea: we prepare a state in one mode basis and we 
measure it in a different mode basis
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Fock states

The vacuum is the ground state of our ensemble of 
quantum harmonic oscillators

Fock states are created by adding a finite number of photons to the system in 
arbitrary modes f1, …, fn.

The full Hilbert space of the bosonic system1 is generated by the closure of the 
span of these states.

1 to be exact, they generate the Fock representation of the algebra of observables
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Modes and photons

U The measurement?

Our states are of the form

Key idea: we prepare a state in one mode basis and we 
measure it in a different mode basis
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A key observable is the number operator in mode f

It “counts” the number of photons in the mode f and its eigenvectors are 
Fock states of the form 

Use

to show

Furthermore, when 
The number operator for the full system is

Some mode basis
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Number of photons

A key observable is the number operator in mode f

It is narrowly related to the energy in the systems

Fock states are energy eigenstates and measuring the energy in a specific 
mode projects on Fock states
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Modes and photons

U

Our states are of the form

Detection events with at most one photon per detector

Input mode basis

Output mode basis

Recap

Prepare a state in one mode basis and we measure it in a different mode basis
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that we started with photon in input modes 1, …, n?

+ Wick contractions

Use canonical commutation relation

U
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Example: n = 2

What is the probability to find photons in output modes j1 and j2, given 
that we started with photon in input modes 1 and 2?

Use canonical 
commutation relationU
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Example: simple Hong-Ou-Mandel

What is the probability to find photons in output modes 1 and 2, given 
that we started with photon in input modes 1 and 2?

We never detect one photon in each output mode, they always bunch together
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Hardness of boson sampling

Why are people so excited about boson sampling?

U

[Aaronson & Arkhipov arXiv:1011.3245]

Permanents are typically hard (#P) to calculate

Second idea from Aaronson and Arkhipov: sampling from any distribution that is 
sufficiently close to                                           is computationally hard. 
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People in quantum optics: “Well, here’s the best I can do for now”

Between 2 and 4 photons

The physics of boson sampling
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Idea: 

On demand photons from a 
quantum dot source

Up to five photons, but 
should be scalable

The physics of boson sampling

How many photons do we 
need for this to be hard?

Clifford and Clifford: “let’s say around 50” [1706.01260]
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When and how do quantum particles become classical?

U U

The devil is in the details… We assume implicitly that our detector is perfectly 
resolving the mode of the particle. Including in the 
time frequency domain…

We need a better model for our detector…
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Distinguishability

When and how do quantum particles become classical?

U U

Distinguishability leads to 
some form of decoherence
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One does not just need many photons, one also needs good quality photons and circuits!

People in quantum optics: 😭 😭 😭 😭

The end of boson sampling?
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Summary
Multimode light is in essence a set of quantum harmonic 
oscillators

Boson sampling boils down to preparing a Fock states in one 
mode basis and measuring it in another U
Simulating boson sampling is computationally hard

Temporal structure of the photons destroys this 
hardness U
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Extra slide: Photon detection

A key observable is the number operator in mode ej

Detect the presence of at least 
one photon

Eaton et al 
arXiv:2205.01221

Count number of photons

Brida et al 
NJP 14 085001 (2012)


