Gaussian Analytic Functions

Subhroshekhar Ghosh
National University of Singapore

Definition, Examples

Let \mathbf{f} be a random analytic function on a region $\Lambda \subset \mathbb{C}$. If $\left(\mathbf{f}\left(z_{1}\right), \mathbf{f}\left(z_{2}\right) \ldots, \mathbf{f}\left(z_{n}\right)\right)$ has mean 0 , complex Gaussian distribution for every $n \geq 1$ and every $z_{1}, z_{2}, \ldots, z_{n} \in \Lambda$, then we say \mathbf{f} is Gaussian analytic function(GAF) on Λ.

Definition, Examples

Let \mathbf{f} be a random analytic function on a region $\Lambda \subset \mathbb{C}$. If $\left(\mathbf{f}\left(z_{1}\right), \mathbf{f}\left(z_{2}\right) \ldots, \mathbf{f}\left(z_{n}\right)\right)$ has mean 0 , complex Gaussian distribution for every $n \geq 1$ and every $z_{1}, z_{2}, \ldots, z_{n} \in \Lambda$, then we say \mathbf{f} is
Gaussian analytic function(GAF) on Λ.
Examples:

1. $\mathbf{p}(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$, where $\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{t}$ is a complex Gaussian vector.
2. $\mathbf{f}(z)=\sum_{k \geq 0} X_{k} \frac{z^{k}}{\sqrt{k!}}$, where X_{k} are i.i.d complex Gaussians

Motivation, Applications

Motivation, Applications

- To study the limiting behaviour of random polynomial models, it is useful to study random analytic functions.

Motivation, Applications

- To study the limiting behaviour of random polynomial models, it is useful to study random analytic functions.
- The zeros of GAF with properties like ergodicity, translation invariance local repulsion makes it similar to other natural models in point processes, physics.

Motivation, Applications

- To study the limiting behaviour of random polynomial models, it is useful to study random analytic functions.
- The zeros of GAF with properties like ergodicity, translation invariance local repulsion makes it similar to other natural models in point processes, physics.

Motivation, Applications

- To study the limiting behaviour of random polynomial models, it is useful to study random analytic functions.
- The zeros of GAF with properties like ergodicity, translation invariance local repulsion makes it similar to other natural models in point processes, physics.
- Random analytic functions appear in theoretical physics as Quantum Chaotic eigenstates (Bogomolny, Bohigas, Lebeouf, ...).

Motivation, Applications

- To study the limiting behaviour of random polynomial models, it is useful to study random analytic functions.
- The zeros of GAF with properties like ergodicity, translation invariance local repulsion makes it similar to other natural models in point processes, physics.
- Random analytic functions appear in theoretical physics as Quantum Chaotic eigenstates (Bogomolny, Bohigas, Lebeouf, ...).
- GAFs appear in the study of spectrogram of signals.

Zeros of GAF

Figure: Planar GAF zeros

Figure: Spherical GAF zeros

Change of variables

Lemma 1

Let $p(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)$ be a polynomial with coefficients of z^{k} as $a_{k}, 0 \leq k \leq n-1$, then the transformation $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by

$$
\begin{equation*}
T\left(z_{1}, z_{2} \ldots, z_{n}\right)=\left(a_{n-1}, \ldots, a_{0}\right) \tag{1}
\end{equation*}
$$

has Jacobian determinant $\prod_{i<j}\left|z_{i}-z_{j}\right|^{2}$.

Proof of Lemma 1

- We need to compute the real Jacobian determinant which is equal to $\left|\operatorname{det}\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)\right|^{2}$ (generalizing from the case of one complex variable).

Proof of Lemma 1

- We need to compute the real Jacobian determinant which is equal to $\left|\operatorname{det}\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)\right|^{2}$ (generalizing from the case of one complex variable).
\triangleright Write $T_{n}(k)=a_{n-k}=(-1)^{k} \sum_{1 \leq i_{1}<i_{2} \cdots<i_{k} \leq n} z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$.

Proof of Lemma 1

- We need to compute the real Jacobian determinant which is equal to $\left|\operatorname{det}\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)\right|^{2}$ (generalizing from the case of one complex variable).
- Write $T_{n}(k)=a_{n-k}=(-1)^{k} \sum_{1 \leq i_{1}<i_{2} \cdots<i_{k} \leq n} z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$.
- If $z_{i}=z_{j}$ for some $i \neq j$, then i, j th columns of
$\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)$ are equal and the determinant is divisible by $\left(z_{i}-z_{j}\right)$.

Proof of Lemma 1

- We need to compute the real Jacobian determinant which is equal to $\left|\operatorname{det}\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)\right|^{2}$ (generalizing from the case of one complex variable).
- Write $T_{n}(k)=a_{n-k}=(-1)^{k} \sum_{1 \leq i_{1}<i_{2} \cdots<i_{k} \leq n} z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$.
- If $z_{i}=z_{j}$ for some $i \neq j$, then i, j th columns of
$\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)$ are equal and the determinant is divisible by $\left(z_{i}-z_{j}\right)$.
- This implies $\operatorname{det}\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)=C_{n} \times \prod_{i<j}\left(z_{i}-z_{j}\right)$.

Proof of Lemma 1

- We need to compute the real Jacobian determinant which is equal to $\left|\operatorname{det}\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)\right|^{2}$ (generalizing from the case of one complex variable).
- Write $T_{n}(k)=a_{n-k}=(-1)^{k} \sum_{1 \leq i_{1}<i_{2} \cdots<i_{k} \leq n} z_{i_{1}} z_{i_{2}} \ldots z_{i_{k}}$.
- If $z_{i}=z_{j}$ for some $i \neq j$, then i, j th columns of
$\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)$ are equal and the determinant is divisible by $\left(z_{i}-z_{j}\right)$.
- This implies $\operatorname{det}\left(\frac{\partial T\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial\left(z_{1}, z_{2}, \ldots, z_{n}\right)}\right)=C_{n} \times \prod_{i<j}\left(z_{i}-z_{j}\right)$.
- C_{n} can be computed to be $(-1)^{n(n+1) / 2}$.

Complex Gaussian Distribution

A standard complex Gaussian is a complex valued random variable with probability density $\frac{1}{\pi} e^{-|z|^{2}}$ on the complex plane.

Complex Gaussian Distribution

A standard complex Gaussian is a complex valued random variable with probability density $\frac{1}{\pi} e^{-|z|^{2}}$ on the complex plane.

Let $a_{k}, 1 \leq k \leq n$ be i.i.d standard complex Gaussians. Then $\mathbf{a}:=\left(a_{1}, \ldots, s_{n}\right)^{t}$ is a standard complex Gaussian vector.

Complex Gaussian Distribution

A standard complex Gaussian is a complex valued random variable with probability density $\frac{1}{\pi} e^{-|z|^{2}}$ on the complex plane.

Let $a_{k}, 1 \leq k \leq n$ be i.i.d standard complex Gaussians. Then $\mathbf{a}:=\left(a_{1}, \ldots, s_{n}\right)^{t}$ is a standard complex Gaussian vector.

If B is a (complex) $m \times n$ matrix then $B \mathbf{a}+\mu$ is m - dimensional complex Gaussian vector with mean μ and covariance $\Sigma=B B^{*}$.

Complex Gaussian Distribution

A standard complex Gaussian is a complex valued random variable with probability density $\frac{1}{\pi} e^{-|z|^{2}}$ on the complex plane.

Let $a_{k}, 1 \leq k \leq n$ be i.i.d standard complex Gaussians. Then $\mathbf{a}:=\left(a_{1}, \ldots, s_{n}\right)^{t}$ is a standard complex Gaussian vector.

If B is a (complex) $m \times n$ matrix then $B \mathbf{a}+\mu$ is m - dimensional complex Gaussian vector with mean μ and covariance $\Sigma=B B^{*}$.
μ and Σ determine the distribution of a complex Gaussian vector.

Complex Gaussian Distribution

A standard complex Gaussian is a complex valued random variable with probability density $\frac{1}{\pi} e^{-|z|^{2}}$ on the complex plane.

Let $a_{k}, 1 \leq k \leq n$ be i.i.d standard complex Gaussians. Then $\mathbf{a}:=\left(a_{1}, \ldots, s_{n}\right)^{t}$ is a standard complex Gaussian vector.

If B is a (complex) $m \times n$ matrix then $B \mathbf{a}+\mu$ is m - dimensional complex Gaussian vector with mean μ and covariance $\Sigma=B B^{*}$.
μ and Σ determine the distribution of a complex Gaussian vector.

Weak limits of complex Gaussian are complex Gaussian.

Properties of GAF

If \mathbf{f} is GAF, $\mathbf{f}^{(\mathbf{k})}$ is GAF.

Properties of GAF

If \mathbf{f} is GAF, $\mathbf{f}^{(\mathbf{k})}$ is GAF.

Distribution of GAF f is determined by mean function and covariance kernel K.

Properties of GAF

If \mathbf{f} is GAF, $\mathbf{f}^{(\mathbf{k})}$ is GAF.

Distribution of GAF f is determined by mean function and covariance kernel K.

Analytic extensions of GAFs are GAFs.

Properties of GAF

If \mathbf{f} is GAF, $\mathbf{f}^{(\mathbf{k})}$ is GAF.

Distribution of GAF f is determined by mean function and covariance kernel K.

Analytic extensions of GAFs are GAFs.

Lemma 2

Let ψ_{n} be holomorphic functions on Λ. Assume that $\sum_{n}\left|\psi_{n}(z)\right|^{2}$ converges uniformly on compact sets in Λ. Let a_{n} be i.i.d random variables with zero mean and unit variance. Then, almost surely, $f(z)=\sum_{n} a_{n} \psi_{n}(z)$ converges uniformly on compact sets of Λ and hence defines a random analytic function. If a_{n} are standard complex Gaussians, then $\mathrm{f}(\mathrm{z})$ is a GAF with covariance kernel $K(z, w)=\sum_{n} \psi_{n}(z) \bar{\psi}_{n}(w)$.

Proof of Lemma 2

For any compact set K, regard the sequence $X_{n}=\sum_{k=1}^{n} a_{k} \psi_{k}$ as $L^{2}(K)$ valued random variable.

Proof of Lemma 2

For any compact set K, regard the sequence $X_{n}=\sum_{k=1}^{n} a_{k} \psi_{k}$ as $L^{2}(K)$ valued random variable.
Define the stopping time $\tau=\inf \left\{\ell:\left\|X_{\ell}\right\|>\epsilon\right\}$, then

Proof of Lemma 2

For any compact set K, regard the sequence $X_{n}=\sum_{k=1}^{n} a_{k} \psi_{k}$ as $L^{2}(K)$ valued random variable.
Define the stopping time $\tau=\inf \left\{\ell:\left\|X_{\ell}\right\|>\epsilon\right\}$, then

$$
\begin{aligned}
\mathbb{E}\left[\left\|X_{n}\right\|^{2}\right] & \geq \sum_{k=1}^{n} \mathbb{E}\left[\left\|X_{n}\right\|^{2} 1_{\tau=k}\right] \\
& =\sum_{k=1}^{n} \mathbb{E}\left[1_{\tau=k} \mathbb{E}\left[\left\|X_{n}\right\|^{2} \mid a_{j}, j \leq k\right]\right] \\
& \geq \sum_{k=1}^{n} \mathbb{E}\left[1_{\tau=k}\left\|X_{k}\right\|^{2}\right] \\
& \geq \epsilon^{2} \mathbb{P}(\tau \leq n) .
\end{aligned}
$$

Proof of Lemma 2

For any compact set K, regard the sequence $X_{n}=\sum_{k=1}^{n} a_{k} \psi_{k}$ as $L^{2}(K)$ valued random variable.
Define the stopping time $\tau=\inf \left\{\ell:\left\|X_{\ell}\right\|>\epsilon\right\}$, then

$$
\begin{aligned}
\mathbb{E}\left[\left\|X_{n}\right\|^{2}\right] & \geq \sum_{k=1}^{n} \mathbb{E}\left[\left\|X_{n}\right\|^{2} 1_{\tau=k}\right] \\
& =\sum_{k=1}^{n} \mathbb{E}\left[1_{\tau=k} \mathbb{E}\left[\left\|X_{n}\right\|^{2} \mid a_{j}, j \leq k\right]\right] \\
& \geq \sum_{k=1}^{n} \mathbb{E}\left[1_{\tau=k}\left\|X_{k}\right\|^{2}\right] \\
& \geq \epsilon^{2} \mathbb{P}(\tau \leq n)
\end{aligned}
$$

Hence $\mathbb{P}\left(\sup _{j \leq n}\left\|X_{j}\right\| \geq \epsilon\right) \leq \frac{1}{\epsilon^{2}} \sum_{j=1}^{n}\left\|\psi_{j}\right\|^{2}$.

Proof of Lemma 2

Applying the above bound to the sequence $\left\{X_{N+n}-X_{N}\right\}_{n}$, we get

$$
\mathbb{P}\left(\exists N \text { such that } \forall n,\left\|X_{N+n}-X_{N}\right\| \leq \epsilon\right)=1
$$

Thus almost surely X_{n} converges.

Proof of Lemma 2

Applying the above bound to the sequence $\left\{X_{N+n}-X_{N}\right\}_{n}$, we get

$$
\mathbb{P}\left(\exists N \text { such that } \forall n,\left\|X_{N+n}-X_{N}\right\| \leq \epsilon\right)=1
$$

Thus almost surely X_{n} converges. Use Cauchy's formula(X_{n} is analytic) to write for any $z \in D\left(z_{0}, R\right)$,

$$
\begin{aligned}
X_{n}(z) & =\frac{1}{2 \pi i R} \int_{2 R}^{3 R} \int_{0}^{2 \pi} \frac{X_{n}\left(z_{0}+r e^{i \theta}\right)}{z_{0}+r e^{i \theta}-z} i e^{i \theta} d \theta r d r \\
& =\frac{1}{2 \pi} \int_{A} X_{n}(\zeta) \phi_{z}(\zeta) d m(\zeta)
\end{aligned}
$$

where A is the annulus and ϕ_{z} are defined by the equality.

Proof of Lemma 2

Applying the above bound to the sequence $\left\{X_{N+n}-X_{N}\right\}_{n}$, we get

$$
\mathbb{P}\left(\exists N \text { such that } \forall n,\left\|X_{N+n}-X_{N}\right\| \leq \epsilon\right)=1
$$

Thus almost surely X_{n} converges.
Use Cauchy's formula(X_{n} is analytic) to write for any $z \in D\left(z_{0}, R\right)$,

$$
\begin{aligned}
X_{n}(z) & =\frac{1}{2 \pi i R} \int_{2 R}^{3 R} \int_{0}^{2 \pi} \frac{X_{n}\left(z_{0}+r e^{i \theta}\right)}{z_{0}+r e^{i \theta}-z} i e^{i \theta} d \theta r d r \\
& =\frac{1}{2 \pi} \int_{A} X_{n}(\zeta) \phi_{z}(\zeta) d m(\zeta)
\end{aligned}
$$

where A is the annulus and ϕ_{z} are defined by the equality. As $\left\{\phi_{z}\right\}_{z \in D\left(z_{0}, R\right)}$ are uniformly bounded in $L^{2}(A)$, uniform convergence over compact sets follows.

Isometries of domains

Consider the following domains and groups of transformations

Isometries of domains

Consider the following domains and groups of transformations

- Complex plane \mathbb{C} : The group of transformations

$$
\begin{equation*}
\phi_{\lambda, \beta}(z)=\lambda z+\beta \tag{2}
\end{equation*}
$$

where $|\lambda|=1$ and $\beta \in \mathbb{C}$. These transformations preserve Euclidean metric $d s^{2}=d x^{2}+d y^{2}$ and the Lebesgue measure $d m(z)=d x d y$ on the plane.

Isometries of domains

Consider the following domains and groups of transformations

- Complex plane \mathbb{C} : The group of transformations

$$
\begin{equation*}
\phi_{\lambda, \beta}(z)=\lambda z+\beta \tag{2}
\end{equation*}
$$

where $|\lambda|=1$ and $\beta \in \mathbb{C}$. These transformations preserve Euclidean metric $d s^{2}=d x^{2}+d y^{2}$ and the Lebesgue measure $d m(z)=d x d y$ on the plane.

- The sphere \mathbb{S}^{2} (extended complex plane): The fractional linear transformations

$$
\begin{equation*}
\phi_{\alpha, \beta}(z)=\frac{\alpha z+\beta}{-\bar{\beta} z+\bar{\alpha}} \tag{3}
\end{equation*}
$$

with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}+|\beta|^{2}=1$.

Isometries of domains

$\left|\phi^{\prime}(z)\right|=\frac{1}{|-\bar{\beta} z+\bar{\alpha}|^{2}}$ and $\frac{\left|\phi^{\prime}(z)\right|}{1+|\phi(z)|^{2}}=\frac{1}{1+|z|^{2}}$. This shows that the spherical metric $d s^{2}=\frac{d x^{2}+d y^{2}}{\left(1+|z|^{2}\right)^{2}}$ and spherical measure $\frac{d m(z)}{\left(1+|z|^{2}\right)^{2}}$ are preserved by $\phi_{\alpha, \beta}$.

Isometries of domains

$\left|\phi^{\prime}(z)\right|=\frac{1}{|-\bar{\beta} z+\bar{\alpha}|^{2}}$ and $\frac{\left|\phi^{\prime}(z)\right|}{1+|\phi(z)|^{2}}=\frac{1}{1+|z|^{2}}$. This shows that the spherical metric $d s^{2}=\frac{d x^{2}+d y^{2}}{\left(1+|z|^{2}\right)^{2}}$ and spherical measure $\frac{d m(z)}{\left(1+|z|^{2}\right)^{2}}$ are preserved by $\phi_{\alpha, \beta}$.

- Hyperbolic plane \mathbb{D} : The group of transformations

$$
\begin{equation*}
\phi_{\alpha, \beta}(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}} \tag{4}
\end{equation*}
$$

with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}-|\beta|^{2}=1$, map the unit disk $\mathbb{D}=z:|z|<1$ to itself bijectively.

Isometries of domains

$\left|\phi^{\prime}(z)\right|=\frac{1}{|-\bar{\beta} z+\bar{\alpha}|^{2}}$ and $\frac{\left|\phi^{\prime}(z)\right|}{1+|\phi(z)|^{2}}=\frac{1}{1+|z|^{2}}$. This shows that the spherical metric $d s^{2}=\frac{d x^{2}+d y^{2}}{\left(1+|z|^{2}\right)^{2}}$ and spherical measure $\frac{d m(z)}{\left(1+|z|^{2}\right)^{2}}$ are preserved by $\phi_{\alpha, \beta}$.

- Hyperbolic plane \mathbb{D} : The group of transformations

$$
\begin{equation*}
\phi_{\alpha, \beta}(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}} \tag{4}
\end{equation*}
$$

with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}-|\beta|^{2}=1$, map the unit disk $\mathbb{D}=z:|z|<1$ to itself bijectively.
$\left|\phi^{\prime}(z)\right|=\frac{1}{|\bar{\beta} z+\bar{\alpha}|^{2}}$ and $\frac{\left|\phi^{\prime}(z)\right|}{1-|\phi(z)|^{2}}=\frac{1}{1-|z|^{2}}$. This shows that the spherical metric $d s^{2}=\frac{d x^{2}+d y^{2}}{\left(1-|z|^{2}\right)^{2}}$ and spherical measure $\frac{d m(z)}{\left(1-|z|^{2}\right)^{2}}$ are preserved by $\phi_{\alpha, \beta}$.

Three families of GAFs

We look at the following families of GAFs which are related to the above mentioned domains.

Three families of GAFs

We look at the following families of GAFs which are related to the above mentioned domains.

- The complex plane \mathbb{C} : For $L>0$

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} \frac{\sqrt{L^{n}}}{\sqrt{n!}} z^{n} \tag{5}
\end{equation*}
$$

where a_{n} are i.i.d standard complex Gaussians. f is random analytic in the entire plane with covariance kernel $\exp (L z \bar{w})$.

Three families of GAFs

We look at the following families of GAFs which are related to the above mentioned domains.

- The complex plane \mathbb{C} : For $L>0$

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} \frac{\sqrt{L^{n}}}{\sqrt{n!}} z^{n} \tag{5}
\end{equation*}
$$

where a_{n} are i.i.d standard complex Gaussians. f is random analytic in the entire plane with covariance kernel $\exp (L z \bar{w})$.

- The sphere \mathbb{S}^{2} : For $L \in \mathbb{N}$,

$$
\begin{equation*}
f(z)=\sum_{n=0}^{L} a_{n} \frac{\sqrt{L(L-1) \ldots(L-n+1)}}{\sqrt{n!}} z^{n} \tag{6}
\end{equation*}
$$

where a_{n} are i.i.d standard complex Gaussians. f is random analytic (polynomial) in the entire plane with covariance kernel $(1+z \bar{w})^{L}$.

Isometry-invariant zero sets

- Hyperbolic plane \mathbb{D} : For $L>0$,

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} \frac{\sqrt{L(L+1) \ldots(L+n-1)}}{\sqrt{n!}} z^{n} \tag{7}
\end{equation*}
$$

where a_{n} are i.i.d standard complex Gaussians. f is random analytic in the unit disk \mathbb{D} with covariance kernel $(1-z \bar{w})^{-L}$. For non-integer L, branch of fractional power is taken such that $K(z, z)$ is positive.

Isometry-invariant zero sets

- Hyperbolic plane \mathbb{D} : For $L>0$,

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} \frac{\sqrt{L(L+1) \ldots(L+n-1)}}{\sqrt{n!}} z^{n} \tag{7}
\end{equation*}
$$

where a_{n} are i.i.d standard complex Gaussians. f is random analytic in the unit disk \mathbb{D} with covariance kernel $(1-z \bar{w})^{-L}$. For non-integer L, branch of fractional power is taken such that $K(z, z)$ is positive.

Theorem 3
The zero sets of GAF in equations (5), (6), (7) are invariant (in distribution) under transformations defined in (2), (3), (4).

Proof of Theorem 3

We prove for the case of complex plane. Similar arguments hold for the case of sphere and unit disk.

Proof of Theorem 3

We prove for the case of complex plane. Similar arguments hold for the case of sphere and unit disk.

- $f(z)$ in (5) is a mean zero complex Gaussian process with covariance kernel $\exp L z \bar{W}$.

Proof of Theorem 3

We prove for the case of complex plane. Similar arguments hold for the case of sphere and unit disk.

- $f(z)$ in (5) is a mean zero complex Gaussian process with covariance kernel $\exp L z \bar{w}$.
- $g(z)=f(\lambda z+\beta)$, with $|\lambda|=1, \beta \in \mathbb{C}$, is also a mean zero complex Gaussian process.

Proof of Theorem 3

We prove for the case of complex plane. Similar arguments hold for the case of sphere and unit disk.

- $f(z)$ in (5) is a mean zero complex Gaussian process with covariance kernel $\exp L z \bar{w}$.
- $g(z)=f(\lambda z+\beta)$, with $|\lambda|=1, \beta \in \mathbb{C}$, is also a mean zero complex Gaussian process.

$$
\begin{aligned}
K_{g}(z, w) & =K_{f}(\lambda z+\beta, \lambda w+\beta) \\
& =\exp \left(L z \bar{w}+L z \lambda \bar{\beta}+L \bar{w} \bar{\lambda} \beta+L|\beta|^{2}\right)
\end{aligned}
$$

Proof of Theorem 3

We prove for the case of complex plane. Similar arguments hold for the case of sphere and unit disk.

- $f(z)$ in (5) is a mean zero complex Gaussian process with covariance kernel $\exp L z \bar{w}$.
- $g(z)=f(\lambda z+\beta)$, with $|\lambda|=1, \beta \in \mathbb{C}$, is also a mean zero complex Gaussian process.

$$
\begin{aligned}
K_{g}(z, w) & =K_{f}(\lambda z+\beta, \lambda w+\beta) \\
& =\exp \left(L z \bar{w}+L z \lambda \bar{\beta}+L \bar{w} \bar{\lambda} \beta+L|\beta|^{2}\right)
\end{aligned}
$$

- It is easy to check that the centred complex Gaussian process also has $\mathbf{h}(\mathbf{z})=\mathbf{f}(\mathbf{z}) e^{L z \lambda \bar{\beta}+\frac{1}{2} L|\beta|^{2}}$ also has the same covariance kernel as that of g.

Proof of Theorem 3

We prove for the case of complex plane. Similar arguments hold for the case of sphere and unit disk.

- $f(z)$ in (5) is a mean zero complex Gaussian process with covariance kernel $\exp L z \bar{w}$.
- $g(z)=f(\lambda z+\beta)$, with $|\lambda|=1, \beta \in \mathbb{C}$, is also a mean zero complex Gaussian process.

$$
\begin{aligned}
K_{g}(z, w) & =K_{f}(\lambda z+\beta, \lambda w+\beta) \\
& =\exp \left(L z \bar{w}+L z \lambda \bar{\beta}+L \bar{w} \bar{\lambda} \beta+L|\beta|^{2}\right)
\end{aligned}
$$

- It is easy to check that the centred complex Gaussian process also has $\mathbf{h}(\mathbf{z})=\mathbf{f}(\mathbf{z}) e^{L z \lambda \bar{\beta}+\frac{1}{2} L|\beta|^{2}}$ also has the same covariance kernel as that of g.
- As f and h have the same zeros, zeros of f, g have same distribution.

First Intensity Computation

We look at the counting measure n_{f} (with multiplicities) on $\mathbf{f}^{-1}\{0\}$ when \mathbf{f} is a GAF.

First Intensity Computation

We look at the counting measure n_{f} (with multiplicities) on $\mathbf{f}^{-1}\{0\}$ when \mathbf{f} is a GAF.
First Intensity by Green's formula.

First Intensity Computation

We look at the counting measure n_{f} (with multiplicities) on $\mathbf{f}^{-1}\{0\}$ when \mathbf{f} is a GAF.
First Intensity by Green's formula. Let ϕ be any smooth function compactly supported in Λ.

First Intensity Computation

We look at the counting measure n_{f} (with multiplicities) on $\mathbf{f}^{-1}\{0\}$ when \mathbf{f} is a GAF.
First Intensity by Green's formula. Let ϕ be any smooth function compactly supported in Λ. $f(z)=g(z) \prod_{k}\left(z-a_{k}\right)^{m_{k}}$, where a_{k} are the zeros of f that are in the support of ϕ and g is analytic with no zeros is support of ϕ.

First Intensity Computation

We look at the counting measure n_{f} (with multiplicities) on $\mathbf{f}^{-1}\{0\}$ when \mathbf{f} is a GAF.
First Intensity by Green's formula. Let ϕ be any smooth function compactly supported in Λ. $f(z)=g(z) \prod_{k}\left(z-a_{k}\right)^{m_{k}}$, where a_{k} are the zeros of f that are in the support of ϕ and g is analytic with no zeros is support of ϕ.

First Intensity Computation

We look at the counting measure n_{f} (with multiplicities) on $\mathbf{f}^{-1}\{0\}$ when \mathbf{f} is a GAF.
First Intensity by Green's formula. Let ϕ be any smooth function compactly supported in Λ. $f(z)=g(z) \prod_{k}\left(z-a_{k}\right)^{m_{k}}$, where a_{k} are the zeros of f that are in the support of ϕ and g is analytic with no zeros is support of ϕ. $\log |f(z)|=\log |g(z)|+\sum_{k} m_{k} \log \left|z-a_{k}\right|$.

First Intensity Computation

We look at the counting measure n_{f} (with multiplicities) on $\mathbf{f}^{-1}\{0\}$ when \mathbf{f} is a GAF.
First Intensity by Green's formula. Let ϕ be any smooth function compactly supported in Λ. $f(z)=g(z) \prod_{k}\left(z-a_{k}\right)^{m_{k}}$, where a_{k} are the zeros of f that are in the support of ϕ and g is analytic with no zeros is support of ϕ. $\log |f(z)|=\log |g(z)|+\sum_{k} m_{k} \log \left|z-a_{k}\right|$.
$\Delta \log |g(z)|$ is identically zero on the support of ϕ. $\frac{1}{2 \pi} \log \left|z-a_{k}\right|=G\left(a_{k}, z\right)$, the Green's function for the Laplacian in plane.

First Intensity Computation

We look at the counting measure n_{f} (with multiplicities) on $\mathbf{f}^{-1}\{0\}$ when \mathbf{f} is a GAF.
First Intensity by Green's formula. Let ϕ be any smooth function compactly supported in Λ.
$f(z)=g(z) \prod_{k}\left(z-a_{k}\right)^{m_{k}}$, where a_{k} are the zeros of f that are in the support of ϕ and g is analytic with no zeros is support of ϕ. $\log |f(z)|=\log |g(z)|+\sum_{k} m_{k} \log \left|z-a_{k}\right|$.
$\Delta \log |g(z)|$ is identically zero on the support of ϕ. $\frac{1}{2 \pi} \log \left|z-a_{k}\right|=G\left(a_{k}, z\right)$, the Green's function for the Laplacian in plane.
This gives

$$
\begin{equation*}
\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi} \log \left|z-a_{k}\right| d m(z)=\phi\left(a_{k}\right) \tag{8}
\end{equation*}
$$

First Intensity Computation

This implies

$$
\begin{equation*}
\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi} \log |f(z)| d m(z)=\int_{\Lambda} \phi(z) d n_{f}(z) \tag{9}
\end{equation*}
$$

First Intensity Computation

This implies

$$
\begin{equation*}
\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi} \log |f(z)| d m(z)=\int_{\Lambda} \phi(z) d n_{f}(z) \tag{9}
\end{equation*}
$$

Now for random analytic function \mathbf{f}, we get

$$
\begin{align*}
\mathbb{E}\left[\int_{\Lambda} \phi(z) d n_{f}(z)\right] & =\mathbb{E}\left[\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi} \log |f(z)| d m(z)\right] \\
& =\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi} \mathbb{E}[\log |f(z)|] d m(z) \\
& =\int_{\Lambda} \phi(z) \frac{1}{2 \pi} \Delta \mathbb{E}[\log |f(z)|] d m(z) \tag{10}
\end{align*}
$$

First Intensity Computation

This implies

$$
\begin{equation*}
\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi} \log |f(z)| d m(z)=\int_{\Lambda} \phi(z) d n_{f}(z) \tag{9}
\end{equation*}
$$

Now for random analytic function \mathbf{f}, we get

$$
\begin{align*}
\mathbb{E}\left[\int_{\Lambda} \phi(z) d n_{f}(z)\right] & =\mathbb{E}\left[\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi} \log |f(z)| d m(z)\right] \\
& =\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi} \mathbb{E}[\log |f(z)|] d m(z) \\
& =\int_{\Lambda} \phi(z) \frac{1}{2 \pi} \Delta \mathbb{E}[\log |f(z)|] d m(z) \tag{10}
\end{align*}
$$

The second step is justified by Fubini's theorem.

First Intensity Computation

Use the fact that $\frac{f(z)}{\sqrt{K(z, z)}}$ is standard complex Gaussian to see that

$$
\mathbb{E}[\log |f(z)|]=\mathbb{E}[\log |a|]+\frac{1}{2} \log K(z, z)
$$

First Intensity Computation

Use the fact that $\frac{f(z)}{\sqrt{K(z, z)}}$ is standard complex Gaussian to see that

$$
\mathbb{E}[\log |f(z)|]=\mathbb{E}[\log |a|]+\frac{1}{2} \log K(z, z)
$$

As the first term doesn't depend on $z,(10)$ shows that first intensity of \mathbf{f}^{-1} with respect to Lebesgue measure is given by $\rho_{1}(z)=\frac{1}{4 \pi} \Delta \log K(z, z)$.

First Intensity Computation

Use the fact that $\frac{f(z)}{\sqrt{K(z, z)}}$ is standard complex Gaussian to see that

$$
\mathbb{E}[\log |f(z)|]=\mathbb{E}[\log |a|]+\frac{1}{2} \log K(z, z)
$$

As the first term doesn't depend on $z,(10)$ shows that first intensity of \mathbf{f}^{-1} with respect to Lebesgue measure is given by $\rho_{1}(z)=\frac{1}{4 \pi} \Delta \log K(z, z)$.
We have proved the Edelman-Kostlan formula.

An Offord type estimate

Theorem 4
Let f be a $G A F$ on a domain $\Lambda \in \mathbb{C}$. Let n_{f} denote the counting measure of zero set of f, μ be the expectation of n_{f}, i.e, $\mu(A)=\mathbb{E}\left[n_{f}(A)\right]$. Let $\phi \in C_{c}^{2}(\Lambda)$ be a test function with compact support in Λ. Then for every $\Lambda>0$,

$$
\mathbb{P}\left[\left|\int_{\Lambda} \phi\left(d n_{f}-d \mu\right)\right| \geq \lambda\right] \leq 3 \exp \left(\frac{-\pi \lambda}{\|\Delta \phi\|_{L^{1}}}\right)
$$

An Offord type estimate

We use the following lemma

Lemma 5

Let a be a complex Gaussian random variable with zero mean and variance σ^{2}. Then for any event E in the probability space, we have

$$
\left|\mathbb{E}\left[1_{E} \log |a|\right]-\mathbb{P}(E) \log (\sigma)\right| \leq \mathbb{P}(E)\left[2 \log \frac{1}{\mathbb{P}(E)}+\frac{\mathbb{P}(E)}{2}\right]
$$

An Offord type estimate

We use the following lemma

Lemma 5

Let a be a complex Gaussian random variable with zero mean and variance σ^{2}. Then for any event E in the probability space, we have

$$
\left|\mathbb{E}\left[1_{E} \log |a|\right]-\mathbb{P}(E) \log (\sigma)\right| \leq \mathbb{P}(E)\left[2 \log \frac{1}{\mathbb{P}(E)}+\frac{\mathbb{P}(E)}{2}\right]
$$

Upper bound: w.l.o.g assume $\sigma=1$. Using Jensen's inequality $\mathbb{E}\left[\log |a|^{2} \mid E\right] \leq \log \mathbb{E}\left[|a|^{2} \mid E\right]$.

An Offord type estimate

We use the following lemma

Lemma 5

Let a be a complex Gaussian random variable with zero mean and variance σ^{2}. Then for any event E in the probability space, we have

$$
\left|\mathbb{E}\left[1_{E} \log |a|\right]-\mathbb{P}(E) \log (\sigma)\right| \leq \mathbb{P}(E)\left[2 \log \frac{1}{\mathbb{P}(E)}+\frac{\mathbb{P}(E)}{2}\right]
$$

Upper bound: w.l.o.g assume $\sigma=1$. Using Jensen's inequality $\mathbb{E}\left[\log |a|^{2} \mid E\right] \leq \log \mathbb{E}\left[|a|^{2} \mid E\right]$. This gives

$$
\frac{1}{\mathbb{P}(E)} \mathbb{E}\left[1_{E} \log |a|^{2}\right] \leq \log \left(\frac{1}{\mathbb{P}(E)}\right)
$$

An Offord type estimate

We use the following lemma

Lemma 5

Let a be a complex Gaussian random variable with zero mean and variance σ^{2}. Then for any event E in the probability space, we have

$$
\left|\mathbb{E}\left[1_{E} \log |a|\right]-\mathbb{P}(E) \log (\sigma)\right| \leq \mathbb{P}(E)\left[2 \log \frac{1}{\mathbb{P}(E)}+\frac{\mathbb{P}(E)}{2}\right]
$$

Upper bound: w.l.o.g assume $\sigma=1$. Using Jensen's inequality $\mathbb{E}\left[\log |a|^{2} \mid E\right] \leq \log \mathbb{E}\left[|a|^{2} \mid E\right]$. This gives

$$
\frac{1}{\mathbb{P}(E)} \mathbb{E}\left[1_{E} \log |a|^{2}\right] \leq \log \left(\frac{1}{\mathbb{P}(E)}\right)
$$

Thus $\mathbb{E}\left[1_{E} \log |a|\right] \leq-\frac{1}{2} \mathbb{P}(E) \log \mathbb{P}(E)$.

An Offord type estimate

Lower bound: Let $\log ^{-} x=-\min (0, \log x)$. Then
$\mathbb{E}\left[\log |a| 1_{E}\right] \geq-\mathbb{E}\left[\log ^{-}|a| 1_{E \cap\{|a| \leq \mathbb{P}(E)\}}\right]-\mathbb{E}\left[\log ^{-}|a| 1_{E \cap\{|a|>\mathbb{P}(E)\}}\right]$.

An Offord type estimate

Lower bound: Let $\log ^{-} x=-\min (0, \log x)$. Then
$\mathbb{E}\left[\log |a| 1_{E}\right] \geq-\mathbb{E}\left[\log ^{-}|a| 1_{E \cap\{|a| \leq \mathbb{P}(E)\}}\right]-\mathbb{E}\left[\log ^{-}|a| 1_{E \cap\{|a|>\mathbb{P}(E)\}}\right]$.
Bounding the first term by $-2 \mathbb{P}(E) \log \left(\frac{1}{\mathbb{P}(E)}\right)-\frac{1}{2} \mathbb{P}(E)^{2}$ and the second term by $-\mathbb{P}(E) \log \left(\frac{1}{\mathbb{P}(E)}\right)$ finishes the proof of Lemma 5 .

An Offord type estimate

Lower bound: Let $\log ^{-} x=-\min (0, \log x)$. Then
$\mathbb{E}\left[\log |a| 1_{E}\right] \geq-\mathbb{E}\left[\log ^{-}|a| 1_{E \cap\{|a| \leq \mathbb{P}(E)\}}\right]-\mathbb{E}\left[\log ^{-}|a| 1_{E \cap\{|a|>\mathbb{P}(E)\}}\right]$.
Bounding the first term by $-2 \mathbb{P}(E) \log \left(\frac{1}{\mathbb{P}(E)}\right)-\frac{1}{2} \mathbb{P}(E)^{2}$ and the second term by $-\mathbb{P}(E) \log \left(\frac{1}{\mathbb{P}(E)}\right)$ finishes the proof of Lemma 5 .
Proof.
Use (9) to get

$$
\int_{\Lambda} \phi\left(d n_{f}-d \mu\right)=\int_{\Lambda} \Delta \phi(z) \frac{1}{2 \pi}\{\log |f(z)|-\log \sqrt{K(z, z)}\} d m(z)
$$

Using the above equality, Markov's inequality and applying Lemma 5 makes the proof of Theorem 4 immediate.

