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Definition, Examples

Let f be a random analytic function on a region Λ ⊂ C. If
(f(z1), f(z2) . . . , f(zn)) has mean 0, complex Gaussian distribution
for every n ≥ 1 and every z1, z2, . . . , zn ∈ Λ, then we say f is
Gaussian analytic function(GAF) on Λ.

Examples:

1. p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0, where

(a0, a1, . . . , an)t is a complex Gaussian vector.

2. f(z) =
∑
k≥0

Xk
zk√
k!

, where Xk are i.i.d complex Gaussians
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Motivation, Applications

I To study the limiting behaviour of random polynomial models,
it is useful to study random analytic functions.

I The zeros of GAF with properties like ergodicity, translation
invariance local repulsion makes it similar to other natural
models in point processes, physics.

I Random analytic functions appear in theoretical physics as
Quantum Chaotic eigenstates (Bogomolny, Bohigas, Lebeouf,
...).

I GAFs appear in the study of spectrogram of signals.
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Zeros of GAF

Figure: Planar GAF zeros Figure: Spherical GAF zeros
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Change of variables

Lemma 1
Let p(z) =

∏n
k=1(z − zk) be a polynomial with coefficients of zk

as ak , 0 ≤ k ≤ n − 1, then the transformation T : Cn → Cn

defined by

T (z1, z2 . . . , zn) = (an−1, . . . , a0) (1)

has Jacobian determinant
∏
i<j
|zi − zj |2.
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Proof of Lemma 1

I We need to compute the real Jacobian determinant which is

equal to
∣∣∣det

(
∂T (z1,z2,...,zn)
∂(z1,z2,...,zn)

)∣∣∣2(generalizing from the case of

one complex variable).

I Write Tn(k) = an−k = (−1)k
∑

1≤i1<i2···<ik≤n
zi1zi2 . . . zik .

I If zi = zj for some i 6= j , then i , jth columns of(
∂T (z1,z2,...,zn)
∂(z1,z2,...,zn)

)
are equal and the determinant is divisible by

(zi − zj).

I This implies det
(
∂T (z1,z2,...,zn)
∂(z1,z2,...,zn)

)
= Cn ×

∏
i<j(zi − zj).

I Cn can be computed to be (−1)n(n+1)/2.
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Complex Gaussian Distribution

A standard complex Gaussian is a complex valued random
variable with probability density 1

π e
−|z|2 on the complex plane.

Let ak , 1 ≤ k ≤ n be i.i.d standard complex Gaussians. Then
a := (a1, . . . , sn)t is a standard complex Gaussian vector.

If B is a (complex) m × n matrix then Ba + µ is m- dimensional
complex Gaussian vector with mean µ and covariance Σ = BB∗.

µ and Σ determine the distribution of a complex Gaussian vector.

Weak limits of complex Gaussian are complex Gaussian.
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Properties of GAF

If f is GAF, f(k) is GAF.

Distribution of GAF f is determined by mean function and
covariance kernel K .

Analytic extensions of GAFs are GAFs.

Lemma 2
Let ψn be holomorphic functions on Λ. Assume that

∑
n |ψn(z)|2

converges uniformly on compact sets in Λ. Let an be i.i.d random
variables with zero mean and unit variance. Then, almost
surely,f (z) =

∑
n anψn(z) converges uniformly on compact sets of

Λ and hence defines a random analytic function. If an are standard
complex Gaussians, then f(z) is a GAF with covariance kernel
K (z ,w) =

∑
n ψn(z)ψ̄n(w).
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Proof of Lemma 2

For any compact set K , regard the sequence Xn =
n∑

k=1

akψk as

L2(K ) valued random variable.

Define the stopping time τ = inf{` : ‖X`‖ > ε}, then

E[‖Xn‖2] ≥
n∑

k=1

E[‖Xn‖21τ=k ]

=
n∑

k=1

E
[
1τ=kE[‖Xn‖2|aj , j ≤ k]

]
≥

n∑
k=1

E[1τ=k‖Xk‖2]

≥ ε2P(τ ≤ n).

Hence P(supj≤n‖Xj‖ ≥ ε) ≤ 1
ε2

n∑
j=1
‖ψj‖2.
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Proof of Lemma 2

Applying the above bound to the sequence {XN+n − XN}n, we get

P(∃N such that ∀n, ‖XN+n − XN‖ ≤ ε) = 1.

Thus almost surely Xn converges.

Use Cauchy’s formula(Xn is analytic) to write for any z ∈ D(z0,R),

Xn(z) =
1

2πiR

3R∫
2R

2π∫
0

Xn(z0 + re iθ)

z0 + re iθ − z
ie iθdθrdr

=
1

2π

∫
A

Xn(ζ)φz(ζ)dm(ζ),

where A is the annulus and φz are defined by the equality.
As {φz}z∈D(z0,R) are uniformly bounded in L2(A), uniform
convergence over compact sets follows.
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Isometries of domains

Consider the following domains and groups of transformations

I Complex plane C: The group of transformations

φλ,β(z) = λz + β (2)

where |λ| = 1 and β ∈ C. These transformations preserve
Euclidean metric ds2 = dx2 + dy2 and the Lebesgue measure
dm(z) = dxdy on the plane.

I The sphere S2(extended complex plane): The fractional linear
transformations

φα,β(z) =
αz + β

−β̄z + ᾱ
(3)

with α, β ∈ C and |α|2 + |β|2 = 1.
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Isometries of domains

|φ′(z)| = 1
|−β̄z+ᾱ|2 and |φ′(z)|

1+|φ(z)|2 = 1
1+|z|2 . This shows that the

spherical metric ds2 = dx2+dy2

(1+|z|2)2 and spherical measure dm(z)
(1+|z|2)2 are

preserved by φα,β.

I Hyperbolic plane D: The group of transformations

φα,β(z) =
αz + β

β̄z + ᾱ
(4)

with α, β ∈ C and |α|2 − |β|2 = 1, map the unit disk
D = z : |z | < 1 to itself bijectively.

|φ′(z)| = 1
|β̄z+ᾱ|2 and |φ′(z)|

1−|φ(z)|2 = 1
1−|z|2 . This shows that the

spherical metric ds2 = dx2+dy2

(1−|z|2)2 and spherical measure dm(z)
(1−|z|2)2

are preserved by φα,β.

12 / 21



Isometries of domains

|φ′(z)| = 1
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Three families of GAFs

We look at the following families of GAFs which are related to the
above mentioned domains.

I The complex plane C : For L > 0

f (z) =
∞∑
n=0

an

√
Ln√
n!

zn (5)

where an are i.i.d standard complex Gaussians. f is random
analytic in the entire plane with covariance kernel exp(Lzw̄).

I The sphere S2 : For L ∈ N,

f (z) =
L∑

n=0

an

√
L(L− 1) . . . (L− n + 1)√

n!
zn (6)

where an are i.i.d standard complex Gaussians. f is random
analytic (polynomial) in the entire plane with covariance
kernel (1 + zw̄)L.
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Isometry-invariant zero sets

I Hyperbolic plane D : For L > 0,

f (z) =
∞∑
n=0

an

√
L(L + 1) . . . (L + n − 1)√

n!
zn (7)

where an are i.i.d standard complex Gaussians. f is random
analytic in the unit disk D with covariance kernel (1− zw̄)−L.
For non-integer L, branch of fractional power is taken such
that K (z , z) is positive.

Theorem 3
The zero sets of GAF in equations (5), (6), (7) are invariant (in
distribution ) under transformations defined in (2), (3), (4).
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Proof of Theorem 3

We prove for the case of complex plane. Similar arguments hold
for the case of sphere and unit disk.

I f (z) in (5) is a mean zero complex Gaussian process with
covariance kernel exp Lzw̄ .

I g(z) = f (λz + β), with |λ| = 1, β ∈ C, is also a mean zero
complex Gaussian process.

I

Kg (z ,w) = Kf (λz + β, λw + β)

= exp(Lzw̄ + Lzλβ̄ + Lw̄ λ̄β + L|β|2)

I It is easy to check that the centred complex Gaussian process

also has h(z) = f(z)eLzλβ̄+ 1
2
L|β|2 also has the same covariance

kernel as that of g .
I As f and h have the same zeros, zeros of f , g have same

distribution.
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First Intensity Computation

We look at the counting measure nf (with multiplicities) on f−1{0}
when f is a GAF.

First Intensity by Green’s formula. Let φ be any smooth
function compactly supported in Λ.
f (z) = g(z)

∏
k

(z − ak)mk , where ak are the zeros of f that are in

the support of φ and g is analytic with no zeros is support of φ.

log |f (z)| = log |g(z)|+
∑
k

mk log |z − ak |.

∆ log |g(z)| is identically zero on the support of φ.
1

2π log |z − ak | = G (ak , z), the Green’s function for the Laplacian
in plane.
This gives ∫

Λ

∆φ(z)
1

2π
log |z − ak |dm(z) = φ(ak) (8)
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First Intensity Computation

This implies∫
Λ

∆φ(z)
1

2π
log |f (z)|dm(z) =

∫
Λ

φ(z)dnf (z) (9)

Now for random analytic function f, we get

E

∫
Λ

φ(z)dnf (z)

 = E

∫
Λ

∆φ(z)
1

2π
log |f (z)|dm(z)


=

∫
Λ

∆φ(z)
1

2π
E [log |f (z)|] dm(z)

=

∫
Λ

φ(z)
1

2π
∆E [log |f (z)|] dm(z) (10)

The second step is justified by Fubini’s theorem.

17 / 21



First Intensity Computation

This implies∫
Λ

∆φ(z)
1

2π
log |f (z)|dm(z) =

∫
Λ

φ(z)dnf (z) (9)

Now for random analytic function f, we get

E

∫
Λ

φ(z)dnf (z)

 = E

∫
Λ

∆φ(z)
1

2π
log |f (z)|dm(z)


=

∫
Λ

∆φ(z)
1

2π
E [log |f (z)|] dm(z)

=

∫
Λ

φ(z)
1

2π
∆E [log |f (z)|] dm(z) (10)

The second step is justified by Fubini’s theorem.

17 / 21



First Intensity Computation

This implies∫
Λ

∆φ(z)
1

2π
log |f (z)|dm(z) =

∫
Λ

φ(z)dnf (z) (9)

Now for random analytic function f, we get

E

∫
Λ

φ(z)dnf (z)

 = E

∫
Λ

∆φ(z)
1

2π
log |f (z)|dm(z)


=

∫
Λ

∆φ(z)
1

2π
E [log |f (z)|] dm(z)

=

∫
Λ

φ(z)
1

2π
∆E [log |f (z)|] dm(z) (10)

The second step is justified by Fubini’s theorem.
17 / 21



First Intensity Computation

Use the fact that f (z)√
K(z,z)

is standard complex Gaussian to see that

E [log |f (z)|] = E [log |a|] +
1

2
logK (z , z)

As the first term doesn’t depend on z , (10) shows that first
intensity of f−1 with respect to Lebesgue measure is given by
ρ1(z) = 1

4π∆ logK (z , z).

We have proved the Edelman-Kostlan formula.
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An Offord type estimate

Theorem 4
Let f be a GAF on a domain Λ ∈ C. Let nf denote the counting
measure of zero set of f , µ be the expectation of nf , i.e,
µ(A) = E[nf (A)]. Let φ ∈ C 2

c (Λ) be a test function with compact
support in Λ. Then for every Λ > 0,

P

∣∣∣∣∣∣
∫
Λ

φ(dnf − dµ)

∣∣∣∣∣∣ ≥ λ
 ≤ 3 exp

(
−πλ
‖∆φ‖L1

)
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An Offord type estimate

We use the following lemma

Lemma 5
Let a be a complex Gaussian random variable with zero mean and
variance σ2. Then for any event E in the probability space, we have

|E[1E log |a|]− P(E ) log(σ)| ≤ P(E )

[
2 log

1

P(E )
+

P(E )

2

]
.

Upper bound: w.l.o.g assume σ = 1. Using Jensen’s inequality
E[log |a|2|E ] ≤ logE[|a|2|E ]. This gives

1

P(E )
E[1E log |a|2] ≤ log(

1

P(E )
).

Thus E[1E log |a|] ≤ −1
2P(E ) logP(E ).
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An Offord type estimate

Lower bound: Let log− x = −min(0, log x). Then

E[log |a|1E ] ≥ −E[log− |a|1E∩{|a|≤P(E)}]− E[log− |a|1E∩{|a|>P(E)}].

Bounding the first term by −2P(E ) log( 1
P(E) )− 1

2P(E )2 and the

second term by −P(E ) log( 1
P(E) ) finishes the proof of Lemma 5.

Proof.
Use (9) to get∫

Λ

φ(dnf − dµ) =

∫
Λ

∆φ(z)
1

2π
{log |f (z)| − log

√
K (z , z)}dm(z)

Using the above equality, Markov’s inequality and applying Lemma
5 makes the proof of Theorem 4 immediate.
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