

JRA10:CryPTA Cryogenic Polarized Target Applications

Hartmut Dutz Physikalisches Institut Universität Bonn

Cooperation of four partners

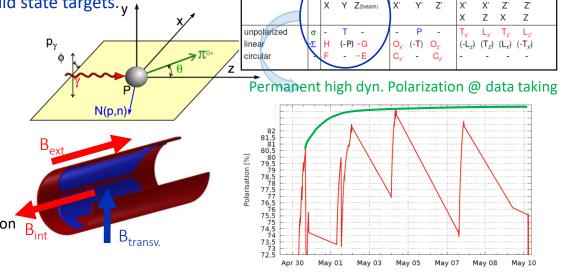
Organization legal name	Short name	Activity leaders
Ruder Boskovic Institute	RBI	M. Korolija
Ruhr-Universität Bochum	RUB	G. Reicherz
Rheinische Friedrich-Wilhelms- Universität Bonn	UBO	H. Dutz
Johannes Gutenberg Universität Mainz	UMainz	A. Thomas

Research Objectives

The final goal of CryPTA is to develop groundbreaking s.c. magnet structures and low temperature detector techniques for new and innovative polarization experiments using polarized targets in 4π -detection systems for hadron physics experiments in Europe

JRA10:CryPTA Cryogenic Polarized Target Applications

Task 1 CryPTA:SuperConductingMagnet for permanent DNP in polarized solid state targets.y


Polarization experiments @ ELSA and MAMI (i.e. baryon spectroscopy)

→ Modell independent partial wave analysis, complete experiment

Task 2 CryPTA:Super**C**onducting**S**hield for passive shielding of the PANDA spec. field for transv. polarization

High temperature ScM for passive or active magnetic field shielding for polarization experiments with internal pol. targets @ PANDA.

Imaginary part of time like FF single spin target asymmetry → transverse polarization

polarization

Task 3 CryPTA:ActivePolarizedTarget materials to detect the recoil proton in-situ, inside the polarized target @ MAMI: Measurements of the Proton Spin-Polarizabilities with Double-Polarized Compton Scattering Event Selection

Pion Photoproduction

Q₁

Q₂

V₃

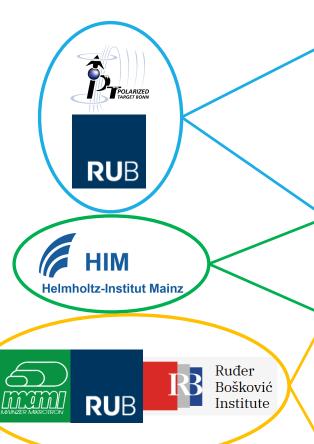
V₄

V₆

V₇

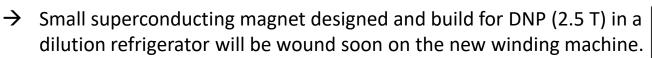

V₈

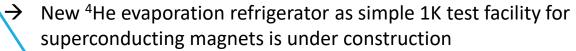
V


Main problems:

- Low energetic recoil protons do not escape from the target and do not reach the detector.
- Events are produced on the background nuclei (Carbon, coherent, incoherent, k~13%).
- → detect the recoil proton in-situ, inside a highly polarized target material

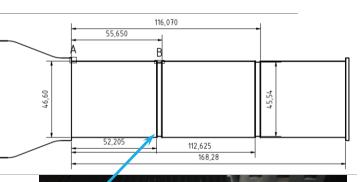
JRA10:CryPTA Cryogenic Polarized Target Applications

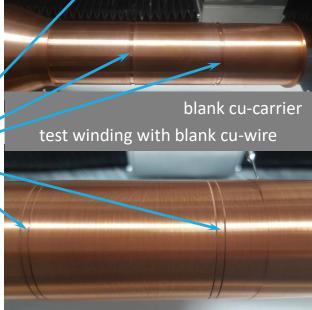

	TAS	TASKS/Subtasks			Year 1			Year 2			
			Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
	1. De	evelopment of low mass superconducting high field magnet	S								
	1.1	High precision winding machine for thin superconducting			1						
		wires			1						
	1.2	Manufacture and test of a small size low mass polarizing									
		solenoid with high homogeneity									
	1.3	Design manufacture and cold test of a prototype low mass,									2
		combined field superconducting magnet system									
	1.4	Magnet field design studies for a low mass large sc.									
		tracking solenoid									
2. Development of low mass superconducting passive shielding											
	2.1	Magnet field calculations for PANDA low mass									3
		superconducting passive shielding									3
	2.2	Design and Manufacture of prototype HTSC shields and									
		test at cryogenic temperatures									
	3. De	etection of recoil particles in active polarized targets at cry	ogenic	temper	atures	6					
	3.1	Design studies for polarized, scintillating target									
		material									
	3.2	Prototypes of a scintillating target stacks with electronic									1
		readout									4
\	3.3	Prototype of a new cryogenic insert with active target									
1		material									



JRA10:CryPTA:Task 1

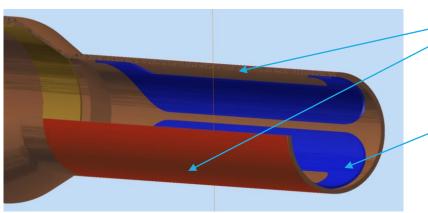
1.2 Manufacture and test of a small size low mass polarizing solenoid with high homogeneity




→ N=5116, 8 Layers, 2.5T @ 68.6A/1K, thickness 2.4 mm

- \rightarrow Fits into the external high field DNP-magnet (B_{max} = 6.5T)
- Field measurement (mapping) by pulsed-, cw-NMR, Hall-probe

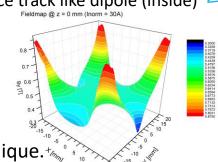
 B (10 : 1)
- → Equipped for DNP (50 140 GHz)
- ➤ Variable temperature range (1K 70K)
- → Flexible and open access via insert tube
- → Large low temperature volume for magnet tests
 (500 mm x Ø75 mm, 2.2l)
- → New magnet has to be tested under nominal conditions (1K).
- → 1K test facility will be available first half next year



JRA10:CryPTA:Task 1

1.3 Design, manufacture and cold test of a prototype low mass combined field superconducting magnet system

Combined longitudinal and transverse holding coil for the new dilution refrigerator for a variable polarization direction in plane (Milestone MS64)


Cu-support (cooling)

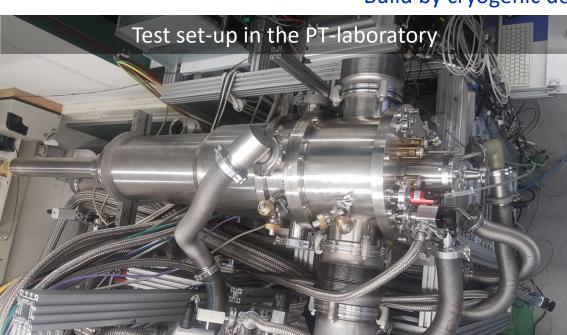
Longitudinal field: solenoid (outside)


- → 4 layers á N590
- \rightarrow I_{max} \sim 32 A
- \rightarrow B_{max} $\sim 0.52 \text{ T}$

Transverse field: race track like dipole (inside)

- → 2 x N525
- \rightarrow $I_{max} \sim 30 \text{ A}$
- \rightarrow B_{max} $\sim 0.50 \text{ T}$

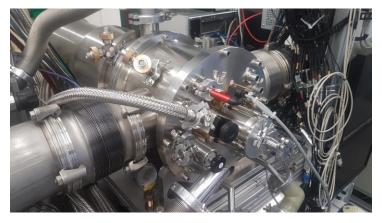
- → Precision wet winding of a solenoid is a well established technique. 🖟
- → Wet winding of race tracks with thin superconducting wires has to be improved to guaranty high performance at minimum thickness
- → Problem: inhomogeneous glue distribution within the coil package
- → New wire feeding device is under construction



Bošković

1.3 Design, manufacture and cold test of a prototype low mass combined field superconducting magnet systems

New horizontal dilution refrigerator for polarization experiments with Crystal Barrel detector @ ELSA

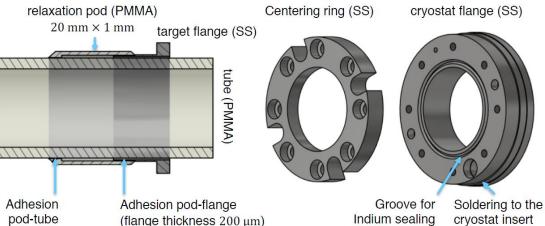

Build by cryogenic department of JINR (Dubna)

Central beam line

Target insert for fast and easy target exchange Designed for various magnet configurations

- \rightarrow T_{min} < 30 mK , TDNP \sim 250 mK
- \rightarrow I_{max} $\sim 40 \text{ A}$

- Delivered fall 2020, assembled and first 1K tests this summer, commissioning in spring 2022
- First polarization experiment @ ELSA planned for fall 2022 using the combined sc.coil configuration
- Foreseen for pol. experiments using active polarized target technology

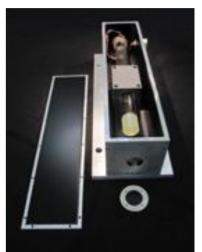


New ideas for a readout with optical fibers have been investigated and further developed in the framework of the finished PhD work of M.Biroth. He has been engaged using EU funding in the period 4-9/2021 to proceed the conception of the system.

1st problem of the prototype:

The transverse integral thermal expansion of PMMA and stainless steel (SS) differs by a factor of six. This has to be compensated by a relaxation pod, which takes the stress from the tube-flange connection.

The longitudinal thermal expansion of ~1% of the 1.5 m PMMA tube has to be compensated at the detector board holder by springs.


Spring construction

JRA10:CryPTA:Task 3

3.2 Prototypes of a scintillating target stack with electronic readout

Prototypes for an readout with optical fibres have been investigated.

Advantages:

- Better light coupling and transport.
- A semi active design using Butanol with better dilution factor becomes possible. D-Butanol is another option.
- Thermal expansion can be partially compensated.

Flange and tube (SS)

Scintillating head with fiber readout

Butanol container (PTFE)

→ the preparation of an improved target insert with optical fiber readout is on the way

List of Milestones in the reporting period

Milestone number	Milestone name	Lead beneficiary	Delivery month from Annex I	Delivered (yes/no)	Actual delivery month	Comments
MS64	Design concept of a low mass, combined field superconducting magnet system	10 – UBO	27	yes	29	A detailed description of the milestone will be available on: <pre>https://www.polarisiertes-target.physik.uni- bonn.de/startseite/strong-2020/status-und-eckpunktberichte</pre>
MS65	Magnet field calculations for PANDA low mass superconducting passive shielding	10 – UBO	27	yes	27	
MS66	Manufacture of prototype active targets for in beam tests	10 – UBO	27	yes	27	

No Deliverables in the reporting period

- > CryPTA annual meeting 2021, June 24th: <a href="https://www.polarisiertes-target.physik.uni-bonn.de/startseite/strong-2020/status-und-de/startseite/st eckpunktberichte/statusberichte/crypta-jahrestreffen-2021
- → CryPTA workshop planed for spring 2022 in Croatia (RBI)

STRONG-2020 Annual Meeting, November 8-9, 2021

Research Objectives

The final goal of CryPTA is to develop groundbreaking s.c. magnet structures and low temperature detector techniques for new and innovative polarization experiments using polarized targets in 4π -detection systems for hadron physics experiments in Europe

Despite the currently unfavorable circumstances: the 3 Tasks are (up to now) on the right track

- Task 1: → completing the small size low mass polarizing solenoid with high homogeneity and commissioning of the magnet test refrigerator.
 - → preparing a combined magnet for the new dilution refrigerator and the near future (2022) data taking campaign.
- Task 2: → Magnet field calculations for PANDA low mass superconducting passive shielding has been successfully completed.
- Task 3: → detailed design concepts for low temperature polarized active targets are defined.
 - → the preparation of an improved target insert with optical fiber readout is on the way .

But: Corona is affecting more and more the work and progress of JRA10
So: lets hope the best

More information about CryPTA: https://www.polarisiertes-target.physik.uni-bonn.de/startseite/strong-2020/