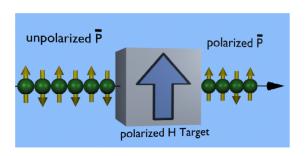
STRONG 2:20

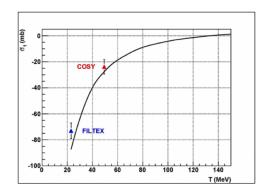
WP 30: JRA12 - Spin for FAIR

Andrea Pesce - IKP-2 (FZJ)

STRONG2020 Annual Meeting – November 8th-10th 2021

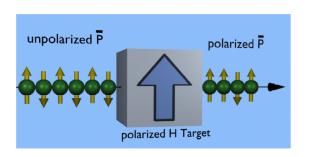
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

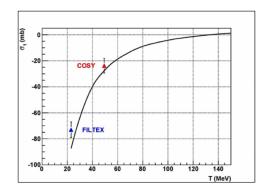

JRA12 – Spin for FAIR: Motivation


• Development of an efficient method for polarizing antiproton beams at FAIR

JRA12 – Spin for FAIR: Motivation

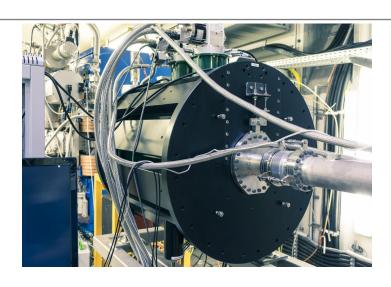
Development of an efficient method for polarizing antiproton beams at FAIR
✓ Spin filtering of protons with transverse polarization performed at COSY

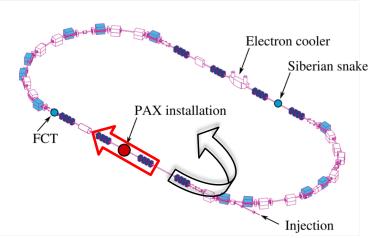




JRA12 – Spin for FAIR: Motivation

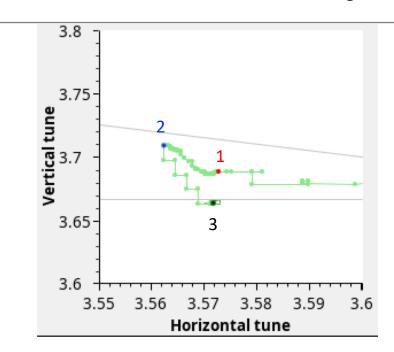
Development of an efficient method for polarizing antiproton beams at FAIR
✓ Spin filtering of protons with transverse polarization performed at COSY

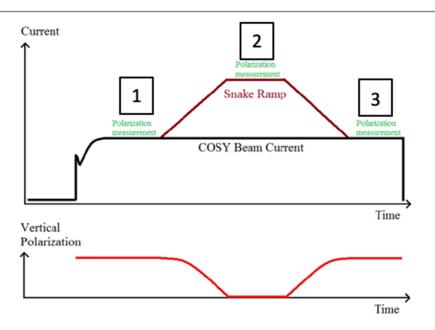




- •Test with longitudinal polarization needed to complete the measurement
 - Full determination of the p_{bar}- p cross section
 - Experimental Storage Ring at FAIR

Siberian Snake Commissioning

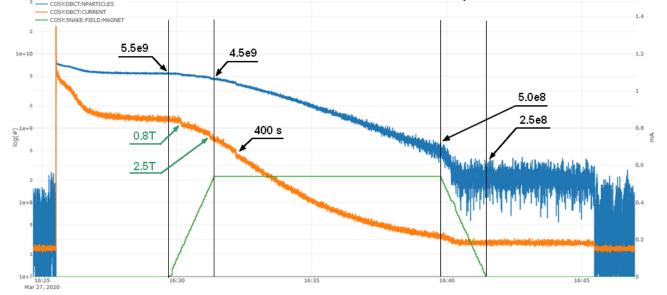



- Installed in COSY @ ANKE place
- First commissioning beam time in March 2020
- Will provide longitudinal polarization at PAX section

Siberian Snake Commissioning

Tune shift observed during Snake ramp

$$(3.573; 3.688) \longrightarrow (3.562; 3.709) \longrightarrow (3.572; 3.664)$$

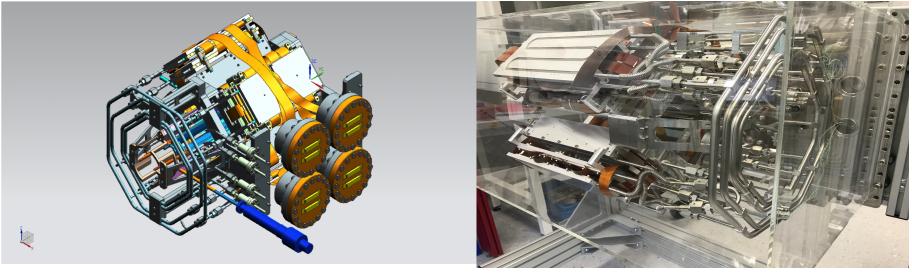

Siberian Snake Commissioning

Initial Tunes: $v_x = 3.572$; $v_y = 3.688$

Flattop @ 2.7 T

MQU1/MQU5 and MQU2/MQU6 used to compensate the tune shift

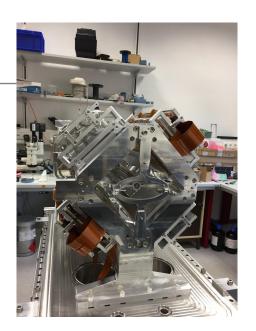
~2.5e08 particles survive after ramp-down



Jump	B _{Sol}	MQU 1,5	MQU 2,6	MQU 4
I	0.0 T	123%	-23%	185%
II	0.0 T – 1.5 T	-23%	-8.5	0.0%
III	1.5 T – 2.4 T	-90%	11%	0.0%
IV	2.4 T – 2.7 T	-15%	0.0%	0.0%

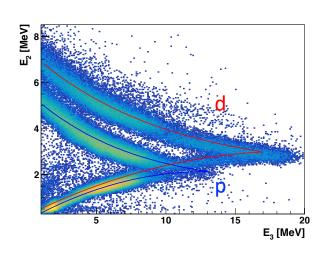
Second beam time delayed due to the pandemic and the budget resctrictions affecting COSY schedule

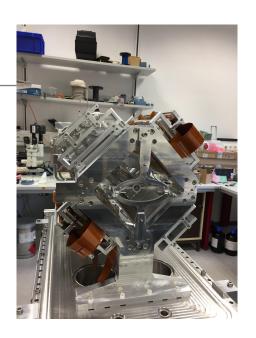
PAX Detector Commissioning



- Multi-purpose silicon vertex detector installed around the storage cell for:
 - p-p (p_{bar}-p) elastic
 - p-d elastic
 - Deuteron breakup
- Energy 30-200 MeV

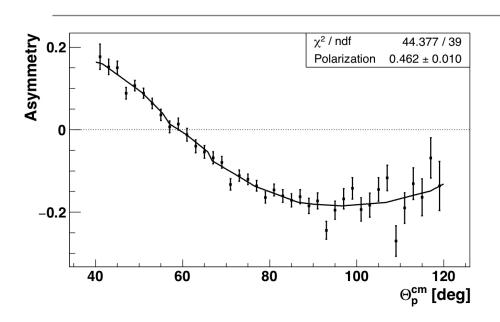
PAX Detector Commissioning


- Installed at PAX section for commissioning with 2 quadrants
- Unpolarized p beam vs. polarized d target

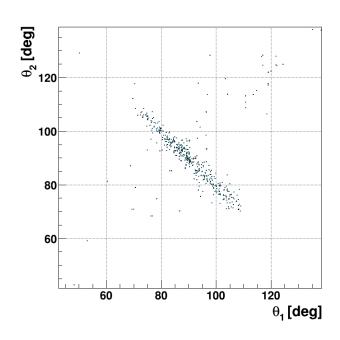


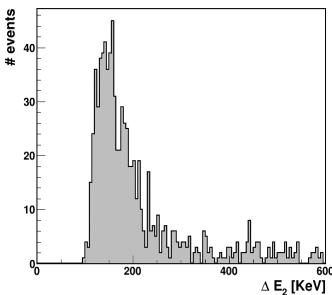
PAX Detector Commissioning

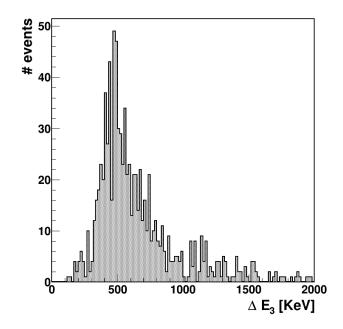
- Installed at PAX section for commissioning with 2 quadrants
- Unpolarized p beam vs. polarized d target
- Identification of p-d elastic events



Measurement of target polarization

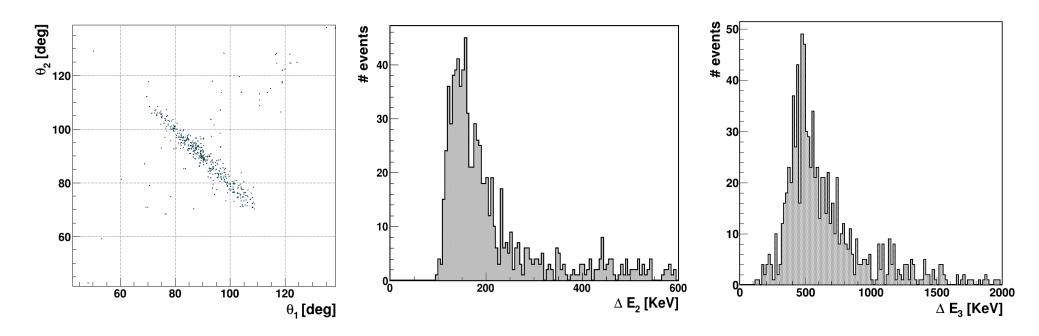



$$\langle Q \rangle = 0.462 \pm 0.010$$



Cosmics Data

- 4 quadrants assembled!
- Test bench for cosmics data acquisition set up in IKP



Cosmics Data

- 4 quadrants assembled!
- Test bench for cosmics data acquisition set up in IKP

Full commissioning foreseen at COSY, according with the coordinated management of the PAX interaction point and the budget restrictions

Longitudinal buildup predictions

 The polarization buildup rate determines the minimum beam life time for a successful filtering process

Solving the coupled evolution equations for P(t) and I(t)

$$P(t) = -\frac{Q(\tilde{\sigma}_1 + \Delta \sigma_1) \cdot \tanh(Q\sigma_3 d_t f t)}{Q\sigma_3 + \Delta \sigma_0 \cdot Q\sigma_3 d_t f t}$$

$$I(t) = I_0 \cdot e^{\left[-(\widetilde{\sigma}_0 + \Delta \sigma_0)d_t f t\right]} \cdot \left[\cosh(Q\sigma_3 d_t f t) + \frac{\Delta \sigma_0}{Q\sigma_3} \sinh(Q\sigma_3 d_t f t)\right]$$

Longitudinal buildup predictions

 The polarization buildup rate determines the minimum beam life time for a successful filtering process

Solving the coupled evolution equations for P(t) and I(t)

$$P(t) = -\frac{Q(\tilde{\sigma}_1 + \Delta \sigma_1) \cdot \tanh(Q\sigma_3 d_t f t)}{Q\sigma_3 + \Delta \sigma_0 \cdot Q\sigma_3 d_t f t}$$

$$I(t) = I_0 \cdot e^{\left[-(\widetilde{\sigma}_0 + \Delta \sigma_0)d_t f t\right]} \cdot \left[\cosh(Q\sigma_3 d_t f t) + \frac{\Delta \sigma_0}{Q\sigma_3} \sinh(Q\sigma_3 d_t f t)\right]$$

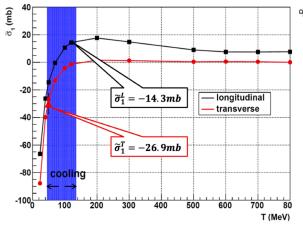
$$Q\sigma_3 = \sqrt{Q^2 \tilde{\sigma}_1 (\tilde{\sigma}_1 + \Delta \sigma_1) + \Delta \sigma_0^2}$$

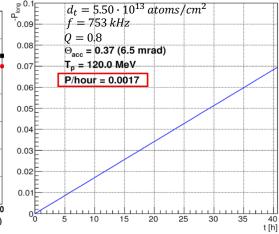
$$P(t) \approx -Qd_t f t(\tilde{\sigma}_1 + \Delta \sigma_1)$$
$$I(t) \approx I_0 e^{\left(-\frac{t}{\tau}\right)}$$

Longitudinal buildup predictions

 The polarization buildup rate determines the minimum beam life time for a successful filtering process

Solving the coupled evolution equations for P(t) and I(t)


$$P(t) = -\frac{Q(\tilde{\sigma}_1 + \Delta \sigma_1) \cdot \tanh(Q\sigma_3 d_t f t)}{Q\sigma_3 + \Delta \sigma_0 \cdot Q\sigma_3 d_t f t}$$


$$I(t) = I_0 \cdot e^{\left[-(\widetilde{\sigma}_0 + \Delta \sigma_0)d_t f t\right]} \cdot \left[\cosh(Q\sigma_3 d_t f t) + \frac{\Delta \sigma_0}{Q\sigma_3} \sinh(Q\sigma_3 d_t f t)\right]$$

$$Q\sigma_3 = \sqrt{Q^2 \tilde{\sigma}_1 (\tilde{\sigma}_1 + \Delta \sigma_1) + \Delta \sigma_0^2}$$

$$P(t) \approx -Qd_t ft(\tilde{\sigma}_1 + \Delta \sigma_1)$$

$$I(t) \approx I_0 e^{\left(-\frac{t}{\tau}\right)}$$

✓ D30.2 'Report on beam and polarization lifetimes and measurement of beam and target polarizazion delivered in May 2021

- ✓ D30.2 'Report on beam and polarization lifetimes and measurement of beam and target polarizazion delivered in May 2021
- MS70: Detector commissioning
 - ✓ Commissioned in COSY with 2 assembled quadrants
 - ✓ First measurement of target polarization
 - √ 4 quadrants completed and assembled; first cosmics data
 - Full commissioning foreseen at PAX place

- ✓ D30.2 'Report on beam and polarization lifetimes and measurement of beam and target polarizazion delivered in May 2021
- MS70: Detector commissioning
 - ✓ Commissioned in COSY with 2 assembled quadrants
 - ✓ First measurement of target polarization
 - ✓ 4 quadrants completed and assembled; first cosmics data
 - Full commissioning foreseen at PAX place
- MS71: Snake commissioning
 - ✓ First commissioning beam time performed in March 2020
 - ✓ Compensation of the tune shift induced by the solenoid
 - Second beam time requested

- MS72: Measurement of target and beam polarization
 - ✓ First measurement of target polarization with the PAX detector
 - Second beam time needed to perform the beam polarization measurement

- MS72: Measurement of target and beam polarization
 - ✓ First measurement of target polarization with the PAX detector.
 - Second beam time needed to perform the beam polarization measurement
- MS73: Predictions for spin-filtering with longitudinal polarization
 - ✓ Simulations performed

- MS72: Measurement of target and beam polarization
 - ✓ First measurement of target polarization with the PAX detector.
 - Second beam time needed to perform the beam polarization measurement
- MS73: Predictions for spin-filtering with longitudinal polarization
 - ✓ Simulations performed

Thank you for your attention!