

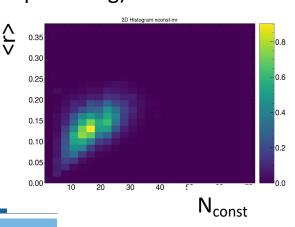
NA3: Quark-Gluon Plasma characterization with jets

Guilherme Milhano, Marco van Leeuwen

NA3 goals and plans

- Theory-experiment collaboration on probing the QGP with jets
- Main goal: survey/benchmark of observables:
 - Large number of potential jet shape/structure observables
 - Identify observables that are sensitive to specific aspects of parton energy loss
- One parton energy loss model as main reference
- Provide public tools for the above

Activities, results in past period

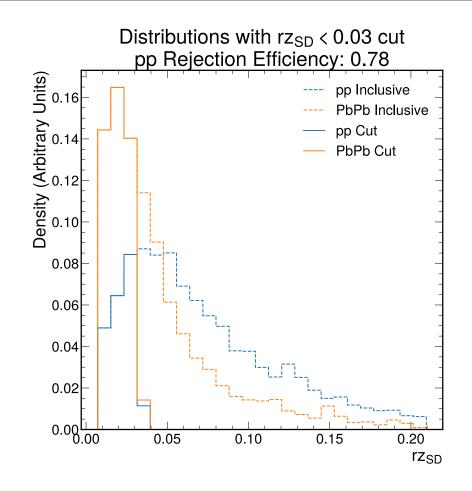

- Previous period: <u>series of online lectures</u> to review jet observables and physics inputs
- Previous period: reference model selected: JEWEL (milestone)
 - Well-documented; clear physics picture in model
 - Clear connection to analytical calculations
 - Made available in a <u>Docker container</u> for portability/ease of use
- Survey of observables almost complete
 - Paper draft in advanced stage; submission in upcoming months
- Next steps:
 - Meeting(s) to discuss results
 - Extensions of survey under discussion: e.g. more powerful machine learning tools, other jet quenching models, thermal background


Surveying jet observables

Surveying jet observables:

- Map correlations to find independent sets
 - Linear correlations: Principle Component Analysis
 - Non-linear: Deep-learning Autoencoder
- 3 main categories of observables
 - Angularities
 - Dynamical grooming measures
 - Jet charge (not sensitive to quenching)
- 5-7 principle components cover most quantities

Linear correlations between variables: PCA



Sensitivity to jet quenching

Sensitivity to jet quenching

- 4-5 promising variables identified
- Large overlap in sensitivity
- Reach full sensitivity with 1-2 variables

