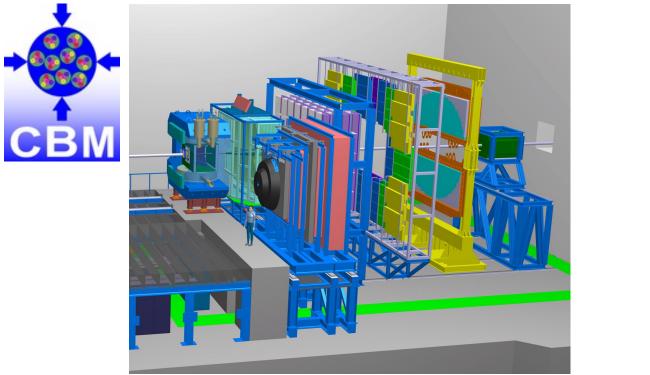
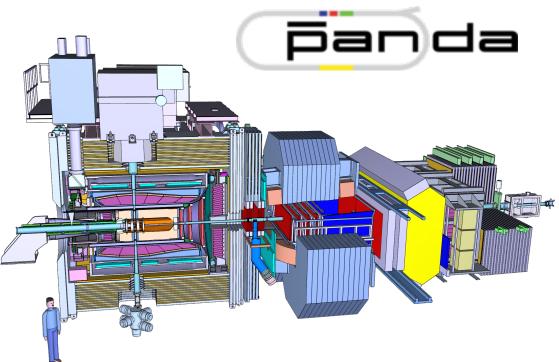


WP12 NA1 - QCD Physics at GSI/FAIR (FAIRnet) Fritz-Herbert Heinsius Ruhr-Universität Bochum

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093

NA1 – QCD Physics at FAIR/GSI




9/2021 CBM Hall

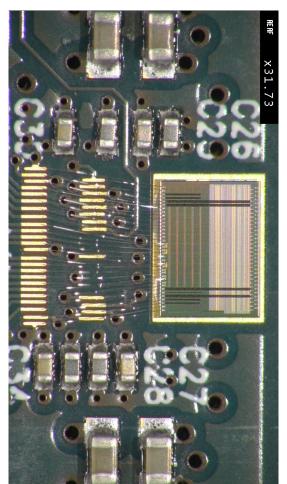
NA1 – QCD Physics at FAIR/GSI

Explore properties of strongly interacting matter under extreme conditions

Investigate the nature of the strong force at the quark level

NA1 – QCD Physics at FAIR/GSI **1. Progress made during the year towards the objectives**

- Task 1: Front-end electronics, DAQ and Online
- Task 2: Demonstrator
- Task 3: Data analysis challenge
- Task 4: Outreach and education


Selected highlights

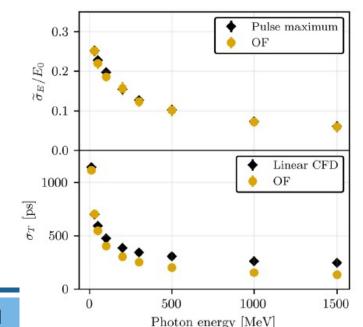
STRONG Progress in Task 1 – Front-end electronics, DAQ and Online

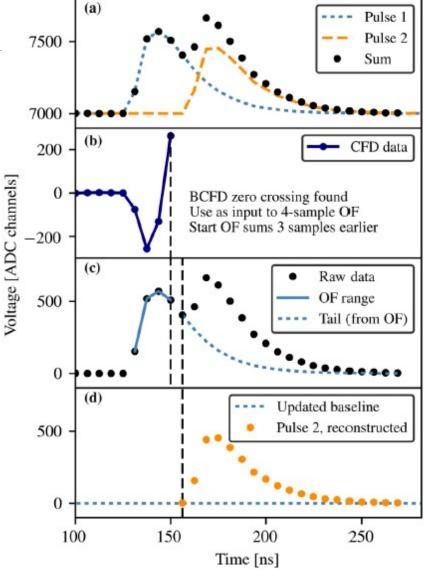
ToASt : a 64 channels readout ASIC for silicon strip detectors in

0.11 µm CMOS technology

- [G. Mazza et al. IEEE NSS MIC October 2021]
- ≻64 input channels
- Time of Arrival (ToA) and Time over Threshold (ToT) measurements
- ➢ Master clock frequency : 160 MHz
- ➢ Region : groups of 8 channels with local FIFO
- Second level FIFO buffering for the 8 regions
- ➤Two output serial links at 160 Mb/s
- Serial configuration protocol at 80 Mb/s
- Full SEU protection via Triple Modular Redundancy

Specification	Min	Max	Unit
Input capacitance	2	17	pF
Max rate per strip		40	kHz
Input charge	1	40	fC
Noise		1500	e ⁻
Preamp peaking time	50	≥ 100	ns
Channels per chip	64		
Reference clock		160	MHz
Charge resolution	8		bits
Time resolution (pk-pk)		6.25	ns
Time resolution (r.m.s.)		1.8	ns
Power consumption		256	mW
Chip dimensions	4.5 × 3.5 mm		mm ²
Pads position	On two sides only		


Progress in Task 1 – Front-end electronics, DAQ and Online


<u>A feature-extraction and pile-up reconstruction algorithm for</u> the forward-spectrometer EMC of the PANDA experiment

[M. Preston et al. NIM A (2021) 165601]

Combination of optimal filter (OF) with constant fraction discriminator implemented in VHDL for the SADC

Progress in Task 1 – Front-end electronics, DAQ and Online

panda

Front-end Electronics and DAQ Workshop October 2021

6

Supporting services

DC Firmware

Data Receviers

Preprocessing

Data Transmitters

Data receivers region:

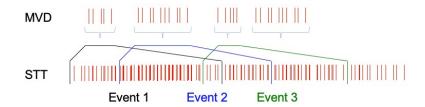
- Logic common to all DCs (configurable num. of links)
- Common link type and protocol
- Unified interface to Preprocessing region

Preprocessing region:

- Fixed, unified data in and out interfaces
- Region available to Subsystem devs.

Data transmitters region:

- Logic common to all DCs (configurable num. of links)
- Unified interface to Preprocessing region
- Commercial network interface


Supporting services:

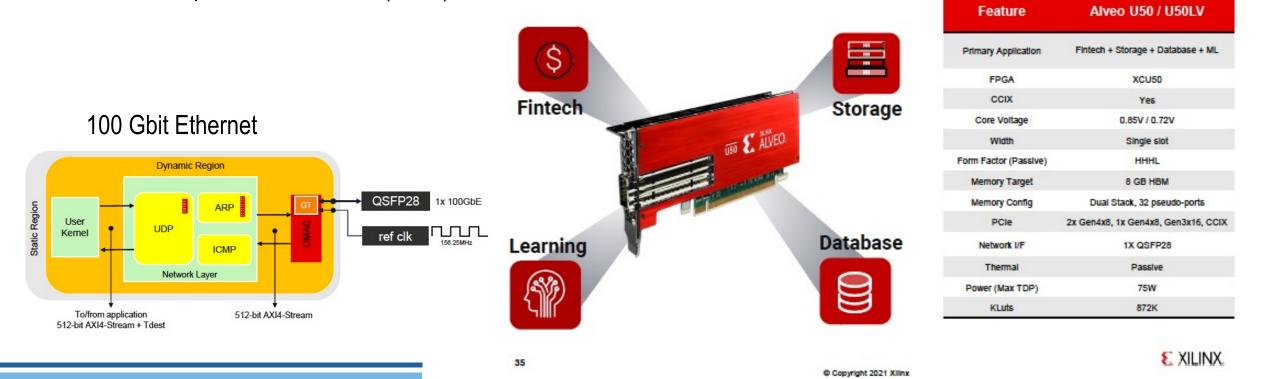
- Control and monitoring
- SODANet
- ATCA management

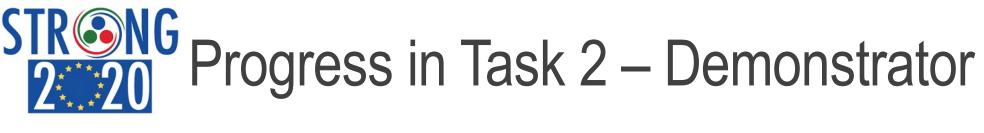
Event Building

Method 1: Add by time window

- Event start and stop time from fast detectors (in this example MVD)
- Data from slow detectors added with time window (e.g. -10 ns / +250 ns for STT)
- Overlapping events \rightarrow remove hits from previously reconstructed events
- Alternative continuous processing

Mitglied der Helmholtz-Gemeinschaft

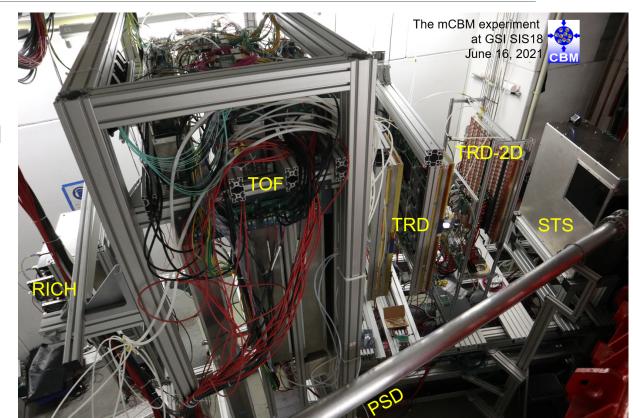


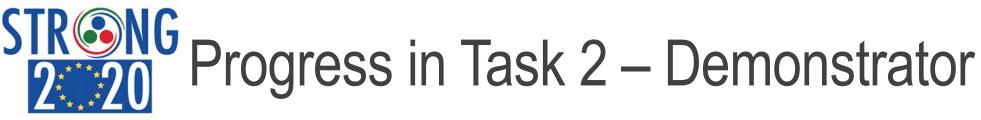

STRONG Progress in Task 1 – Front-end electronics, DAQ and Online

Front-end Electronics and DAQ Workshop October 2021

Invited speaker: Mario Ruiz (Xilinx)

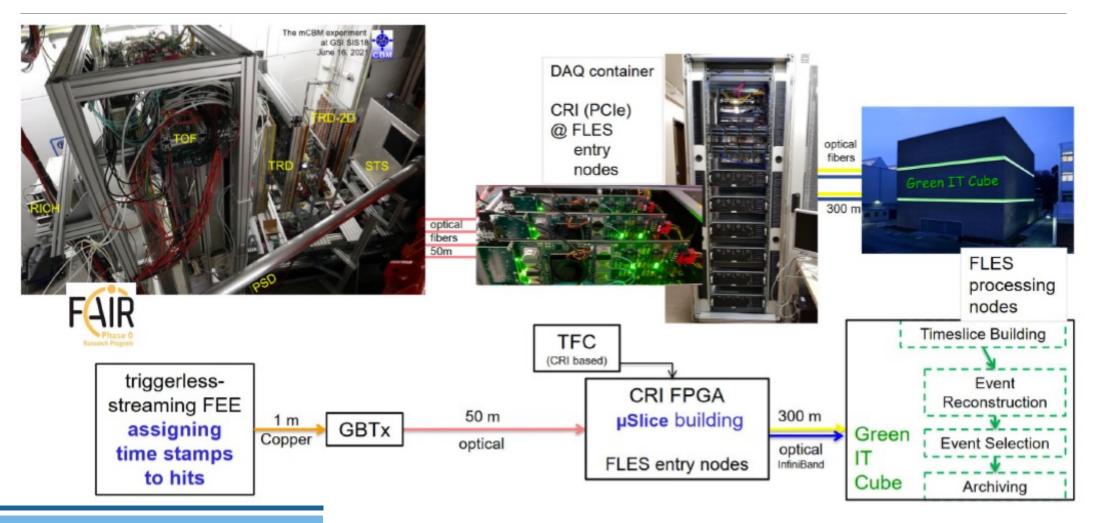
Alveo U50 / U50LV – Low Profile Acceleration Card



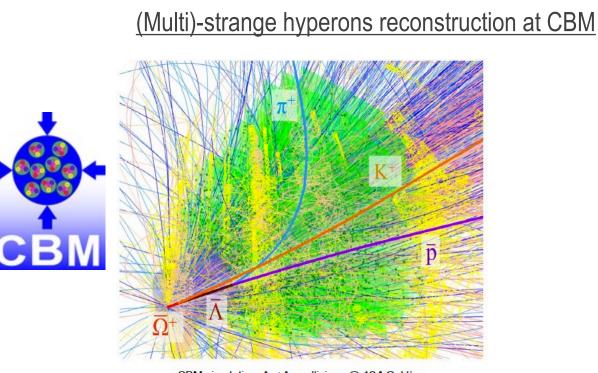

June 2021 mCBM@SIS18

mCBM experiment at SIS18 CBM full-system test, involving pre-series and prototype detector modules of all CBM subsystems

- High-rate detector tests performed in February May '21
- Final configuration of the DAQ / data transport system successfully tested with beam in June/July '21

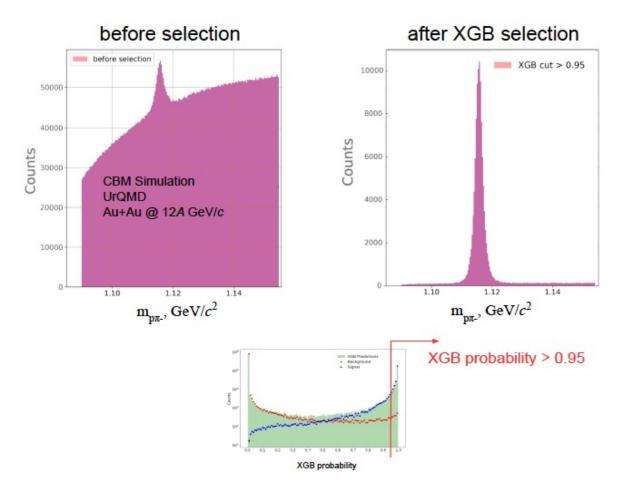


Month in 2021	beam ion	Energy, AGeV	target	rate per spill	duration, sec
March	²⁰⁸ Pb (67+)	1.06	Ni	2 x 10 ⁹	10
May	¹²⁴ Xe (46+)	1.3	Ni	3 x 10 ⁹	10
June	¹⁶ O (8+)	2	Ni	10 ¹¹	10


CBM

The mCBM experiment at SIS18

STRONG Progress in Task 3 – Data analysis challenge

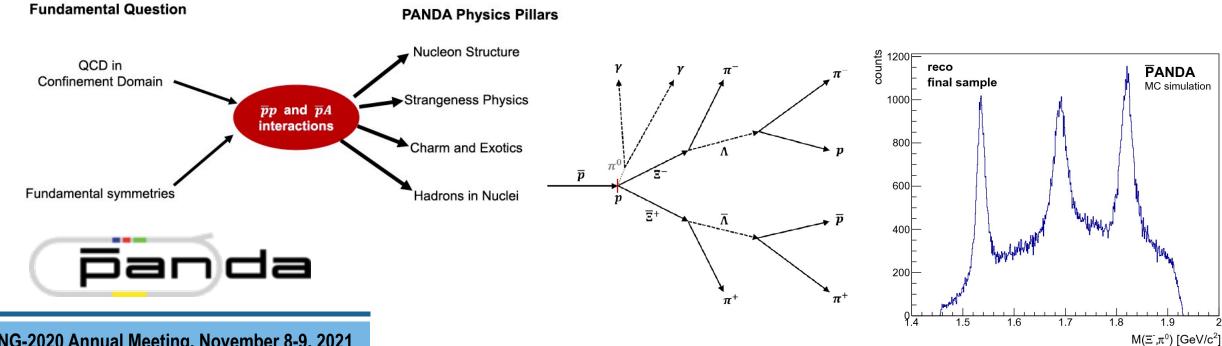

Example of Λ reconstruction via $\Lambda \to \ p\pi^{\text{-}}$

CBM simulation, Au+Au collisions @ 12A GeV/c

I. Selyushenkov, Mini-symposium "Hyperons@FAIR, Oct. 2021

STRONG-2020 Annual Meeting, November 8-9, 2021

Lambda selection criteria are optimzed multi-dimensionally and non-linearly using Machine Learnig algorithms (XGBoost)



> PANDA Phase One paper, *Eur. Phys. J.* A 57, 184 (2021)

Outline of physics programme for the detector setup at the time of the delivery of the first antiproton beams at HESR

> The potential of Λ and Ξ^- studies with PANDA at FAIR, Eur. Phys. J. A 57, 154 (2021)

> Study of excited Ξ baryons with the PANDA detector, Eur. Phys. J. A 57, 149 (2021)

Limited due to Covid-19 restrictions

"Maus-Tag" October 3rd

Real-world stories instead of television

34 kids split into 10 groups

- Presentation of PANDA and strong interaction
- Explanation of the electromagnetic calorimeter

Lab visits

- ➢ Model of a linear particle accelerator
- FAIR drone videos: https://www.youtube.com/watch?v=Y82ZeLH1vZs
- > Hands on: Turning lemons into batteries

Model of linear accelerator as a game

2. Deviations from planned objectives and tasks, and their impact on the progress of the Work Package

- Task 1: Front-end electronics, DAQ and Online
- > delays in production and test of electronics
 - ToAST ASIC: Expected in July, delayed to October due to fab overload
 - Data Concentrator delayed due limited resources at the company, delay in PCB
 - Shortage of electronic components: price increase and delivery times of up to 1 year for FPGAs, controllers and even simple buffers
- > plan to catch up in order to reach the objectives

Task 2: Demonstrator

- ➤mCBM@SIS18 experiment
 - Travel restrictions, thus local personnel increased (funding adjustments)
 - ➢Objectives will be reached
- Demonstrator at COSY/Jülich
 - Delays in preparation due to restricted lab access
 - ➤Try to reach goals in 2023
- Task 3: Data analysis challenge
- >Work independent of location, no major delays
- Task 4: Outreach and education
- Limited possibilities for on-site events, increase efforts once pandemic restrictions are gone

3. Deliverables and milestones

Deliverables (May 2023):

Technical reports and user manuals Repository of software components

Milestones (November 2020):

Repository – software released (done)