Expected b-tagging performance with the ATLAS Phase 2 detector and MVA developments for ttH(bb) analysis

Neelam Kumari

Thesis Supervisors: Arnaud Duperrin and Thomas Strebler

CPPM 3rd year PhD students seminar Centre de Physique des Particules de Marseille Aix-Marseille Université / IN2P3-CNRS

December 06th, 2021

Outline

Introduction

- Top-Yukawa Coupling, TTHbbAnalysis
- b-tagging algorithms

Part-I

Expected b-tagging performance with g motion the ATLAS Phase 2 detector

- HL-LHC, ITk
- b-tagging performance with ITk

д осососос - - - - - - H

Part-II

MVA developments for ttHbb analysis

- BDT trainings
- DNNs development

Introduction

TTH and Top Yukawa coupling

- Probing the top-Higgs Yukawa yt: Largest in Standard Model and sensitive to potential New Physics
- The associated production of a Higgs boson and a top quark-antiquark pair (ttH production) provides direct probe of y_t
- First observation was made in 2018, combining Run 1 and partial Run 2 LHC data

Why ttH (H→bb) ?

- ttH(bb) channel exploits the large branching ratio of H→bb (58%) and the leptonic decays of top quarks has distinctive signature
- Two channels based on the number of leptons in the final state: single-lepton and di-lepton
- Challenges:
 - Modeling of tt+HF background due to large irreducible background with big theoretical uncertainty (from tt+bb)
 - Higgs boson reconstruction challenging due to b-jet combinatorics

g 100000

σ(tt)=830 pb

 σ (tt+b-jets) ~ O(10) pb

b-tagging

ttH studies depend greatly on b-tagging (used to identify the b-quark content of jets):

- Top decays produce b quarks
- Identification of the H→bb candidate is Vertex a vital aspect of the TTH ($H \rightarrow bb$) analysis

b-tagging is also key to many physics analyses at High Luminosity LHC e.g HH production

- **IP** based tagging algorithm: **IP3D** 1.
 - Assigns probabilities to tracks based on 2D likelihood templates PDFs, with the **z0sin(θ)** and **d**₀ lifetime of signed significances of tracks built from b and light simulated jets
- 2. SV based algorithms: SV1
 - Exploits 4 vertex properties : Vertex mass, ΔR (between the jet and PV-SV line), Energy fraction, Number of two-track vertices
- **MV2:** High-level BDT-based taggers exploiting outputs 3. of low-level taggers including IP3D and SV1

Secondary

Tracks

Displaced b-jet tagging rely on B-hadron properties:

- Displaced vertex from primary vertex (PV) called secondary vertex (SV) due to its long life (~1.5ps)
- Tracks from B-decays have large Impact parameters (IP)

Expected b-tagging performance with the ATLAS Phase 2 detector

HL-LHC and ATLAS Inner Tracker

The **High-Luminosity Large Hadron Collider** (HL-LHC) project aims to boost up the performance of the LHC in order to increase the potential for discoveries after 2027.

Challenges

Increase in pile-up (3-4x Run 3) will require better tracking

Increase in integrated luminosity (10x wrt Run 1-3) imposes improved radiation-hardness

Current ATLAS Inner Detector (ID) replaced by Inner Tracker (ITk) to maintain tracking performance in harsh conditions

- Extended forward pseudo- rapidity from
 2.5 to 4 for increased tracking acceptance
- All-silicon design consists of inner Pixel (|η|<4) and outer Strip (|η|<2.7) subdetectors
- Latest ITk layout design with innermost pixel layer closer with respect to previous versions (R=34 mm)

ITk b-tagging framework

- B-tagging algorithms had already been optimised for ITk with the previous ATLAS software release 20.20 (<u>PUB note</u> [ATL-PHYS-PUB-2020-005])
- Release 20.20 had been phased out in early 2020: Developments done in switching to latest upgrade software release 21.9 to stay synchronised with latest developments related to ITk simulation and tracking
- Developments done were used for performances shown in the 2021 <u>PUB note</u> [ATL-PHYS-PUB-2021-024

Track categories:

- PDF templates for IP based taggers are obtained in 14 exclusive categories defined by the hit patterns of the tracks
- Track hit content for |η|<1 (region A) + 1<|η|
 <2 (region B) + track kinematic for |η|>2
- d0 Resolution per track categories consistent between the releases
- ¹Differences arise due to low statistics of tracks in release 21.9

b-tagging performance

- Reconstructed jet p_T and truth jet p_T (truth p_T = p_T of truth jet matched to reco jet) sizeably different and visible differences in jet energy response
- The selection cut on p_{T (Truth)} >20 GeV produced similar agreement to the default selection cut on p_{T (Reco)} >20 GeV
- Re-weighted the p_{T (Truth)} spectrum to make things more compatible for performance checks

- IP3D performance consistent between releases in different η and p_T region and is within 20%-30%
- SV1 Tagger performance within 30%-40%

ITk b-tagging

Re-optimised IP3D categorisation & Material rejection

Studies were already done in release 20.20 to further optimise Track categories which highlighted possible improvements when exploiting more detailed categories based on p_T or hit content: Synchronised developments in current release 21.9

IP3D performance improve with new categorisation in region |η|<2 of 50-60 %

- SV reconstructed when particle has interacted with the detector material becomes a sizeable source of SV for light jets
- SV reconstructed near pixel layers must be vetoed

 Slight better performance observed with Material rejection up-to 5-20 %

PUB note results

- Overall improvements were highlighted in <u>ITk PUB note</u>
- b-tagging performance for the ITk compared to the Run 2 performance

• IP3D performance improved: Improved IP resolution expected with ITk

• **Better performance with MV2**: Displays for a 77% b-jet efficiency working point a light-jet rejection 20% higher than Run 2 detector performance, driven by the IP3D improved performance

MVA developments for ttH(bb) analysis

ttH (H→bb) leptonic: Analysis strategy

Higgs measurement explored through **Simplified Template Cross Sections** (STXS) formalism where cross-section is measured as a function of the p_T^H

- Events categorised in signal regions (SRs) are defined by the #leptons, #jets, #btagged jets (4 working points) and #boosted Higgs boson candidates
- The single-lepton channel is split into boosted and resolved channels
- Events split by p_T^H: (0-120), (120-200), (200-300), (300-450) and (450,∞)
- Define control regions (**CRs**) to constrain $tt+\ge 1b$ and $tt+\ge 1c$

Region	Dilepton				Single-lepton			
	$\mathrm{SR}^{\geq 4j}_{\geq 4b}$	$\mathrm{CR}^{\geq 4j}_{3b~\mathrm{hi}}$	$\mathrm{CR}^{\geq 4j}_{3b~\mathrm{lo}}$	$\mathrm{CR}^{3j}_{3b~\mathrm{hi}}$	$\mathrm{SR}^{\geq 6j}_{\geq 4b}$	$\mathrm{CR}^{5j}_{\geq 4b~\mathrm{hi}}$	$CR^{5j}_{\geq 4b \text{ lo}}$	$\mathrm{SR}_{\mathrm{boosted}}$
#leptons	= 2			= 1				
#jets		$\geq 4 \qquad \qquad = 3 \qquad \geq 6 \qquad \qquad = 5$		5	≥ 4			
@85%					≥ 4			
#h tag		_			_			$\geq 2^{\dagger}$
#0-tag @70%	≥ 4	4 = 3			≥ 4			_
@60%	_	= 3	< 3	= 3	_	≥ 4	< 4	_
#boosted cand.			_			0		≥ 1
Fit input	BDT		Yield		BDT/Yield	ΔR_{l}^{a}	avg bb	BDT

Previous round results: Measurement of the ttH production with ttH(bb) events using full Run-2 (139 fb⁻¹) luminosity with 1 or 2 leptons (e/μ) in final state [<u>HIGG-2020-23</u>]

Signal-strength measurements in the individual STXS p_T^H bins and inclusive signal strength

Neelam Kumari

ttH (H→bb) leptonic: MVA

Multivariate classifiers are used in two parts in the analysis for **reconstructing Higgs boson candidate** objects and **classifying ttH signal events**

proton

proton

Reconstruction:

- BDT training per jet-parton combination on signal is used to find all the correct combinations (highest BDT score) and rest treated as background
- Major emphasis is to efficiently reconstruct the Higgs boson candidate correctly in a given STXS bin + define high-level variables used to discriminate ttH from tt+bb e.g "Higgs mass"

Reconstructed efficiency in STXS bin							
	Dilepton	Single	e-lepton				
p_{T}^{H} [GeV]	$\mathrm{SR}^{\geq 4j}_{\geq 4b}$	$\mathrm{SR}_{\geq 4b}^{\geq 6j}$	$\mathrm{SR}_{\mathrm{boosted}}$				
Inclusive	51%	43%	91%				
[0, 120)	43%	35%					
[120, 200)	50%	45%					
[200, 300)	64%	57%					
[300, 450) $[450, \infty)$	78%	59%	$90\% \\ 93\%$				

Classification:

 Discriminate signal from background, using kinematic properties as well as reconstruction BDTs and output is used in signal+background fits in signal regions

Classification BDT

Previous round results: [HIGG-2020-23]

Reconstruction BDT performance

BDTs are retrained in next round of TTH(bb) Analysis exploiting the recent jet analysis and more performant b-tagging algorithms (**DL1r vs MV2c10**)

- Event fraction: Fraction of events where the truth object is reconstructed
- Match fraction: Fraction of events where the truth object is reconstructed + selected the permutation with best BDT score

- Slightly larger fraction of events where the truth objects are reconstructed with PFlow
- Reconstruction performance using PFlow/DL1r jets is slightly better than EMTopo/MV2c10
 jets performance and retraining showed negligible impact on the performance

Classification BDT performance

CLassBDT performed using old weights using EMtopo/MV2c10 similar performance CLassBDT performed with new weights using PFlow/DL1r (re-training) shows negligible impact on the performance

The study also provided a similar baseline using PFlow jets in order to further approach to new MVA architectures using **Deep Neural Networks (DNNs)**

Implement DNNs which is used for binary classification are expected to perform better than BDTs

Neelam Kumari

DNNs developments

- Targeting to perform multi-classification focusing on separating signal from tt
 background but also building signal vs tt+light vs tt+cc vs tt+b vs tt+2b vs tt+bb
 discriminant with a probability associated with each background
- Gives the possibility to build Control Regions naturally dominated by a single background component→Constrain the uncertainties of the different processes and increases the overall sensitivity

DNN architectures offers flexibility to compute with a single tool:

Perform regression on Higgs kinematics variables to be used for differential STXS measurements

Multi-process classification with discriminants to be used to build CR + perform shape fits for signal extraction

DNNs: Deep-sets

Deep Sets setup:

- treat each element as a set without a specific order (permutation invariance)
- Each jet combination is processed by φ network (of several connected layers)
- These are then summed Σ up and the output is processed using p network consisting of similar connected hidden layers

Inputs:

- Both the multiple jet combinations as well as the correlation between features are considered as inputs to the machine learning model
- Trained models are tested for events with ≥ 6jets,
 ≥ 4b-jets:
- The same set of inputs² as in RecoBDT were used in the training (reconstruction)

The performance with the new trainings is compared with the performance of recoBDT

² List in the back-up

Deep-set reconstruction performance

Training done on multi-classier network using Deep-sets: STXS bins are taken as the different classes [(0,60 , (60,120), (120,200), (200,300), (300,45), (450,∞)] GeV

Deep-set multi-classifier reconstruction performance overall **shows good improvement** when compared to recoBDT

Deep-set classification performance

- Extended the deep-set multi-classifier to perform both reconstruction and signal vs bkg classification in a single tool
- Class 0-5 are the ttH STXS classes and class 6 is background (here tt+bb used)
- Adding individual output probabilities of "0-5 classes" will be the final probability being signal (ttH) and "class 6" probability for background

- Reconstruction performance not affected by extended architecture to include classification of signal vs background
- This is the preliminary result for classification performance to establish a reasonable baseline.

Summary

Part-I

- b-tagging performance in release 21.9 in line with performance in release 20.20
- New IP3D categories relying on pTbased categorisation for |η|<2 + detailed hit content for |η|>2 are available and expected to improve performance
- SV1 performance studied with ITk Material rejection implementation which showed slight improvement in performance
- Overall improvements were highlighted in <u>ITk PUB note</u>

Part-II

- Focused on retraining the Multi-Variate Analysis discriminant using Particle Flow + DL1r b-tagging jets
- Slightly better performance for recoBDT and similar performance for classBDT
- Efforts ongoing to implement DNNs targeting to perform the reconstruction and multibackground classification in a single step
- Reconstruction performance with Deep-set multi classifier shows better performance than RecoBDT
- DNN architecture extended to classify signal vs background
- Further develop the network to classify signal vs tt background (tt +light vs tt+cc vs tt+b vs tt+2b vs tt+bb)
- Study integration in analysis to assess impact on sensitivity and study data/MC agreement

Next →

Thank you for your time!

d0 resolution for category A01 and A05

Inputs for reconstruction

• List of input variables used in the training models:

Variable		Region				
Variable	$\geq 6j$	5j				
Topological information from $t\bar{t}$						
$t_{ m lep}$ mass	\checkmark	\checkmark				
$t_{ m had}$ mass	\checkmark	-				
Incomplete t_{had} mass	-	\checkmark				
$W_{ m had}$ mass	\checkmark	-				
Mass of $W_{ m had}$ and b from $t_{ m lep}$	\checkmark	\checkmark				
Mass of W_{lep} and b from t_{had}	\checkmark	\checkmark				
$\Delta R(W_{ m had}, b { m from } t_{ m had})$	\checkmark	\checkmark				
$\Delta R(W_{ m had}, b { m from } t_{ m lep})$	\checkmark	\checkmark				
ΔR (lep, b from $t_{ m lep}$)	\checkmark	\checkmark				
ΔR (lep, b from t_{had})	\checkmark	\checkmark				
$\Delta R(b \text{ from } t_{\text{lep}}, b \text{ from } t_{\text{had}})$	\checkmark	\checkmark				
$\Delta R(q_1 \text{ from } W_{ ext{had}}, q_2 \text{ from } W_{ ext{had}})$	\checkmark	-				
$\Delta R(b \text{ from } t_{ ext{had}}, q_1 \text{ from } W_{ ext{had}})$	\checkmark	-				
$\Delta R(b ext{ from } t_{ ext{had}}, q_2 ext{ from } W_{ ext{had}})$	\checkmark	-				
min. $\Delta R(b \text{ from } t_{had}, q \text{ from } W_{had})$		-				
min. $\Delta R(b \text{ from } t_{had}, q \text{ from } W_{had}) - \Delta R(\text{lep, } b \text{ from } t_{lep})$	\checkmark	\checkmark				
Topological information from Higgs boson candidate						
Higgs candidate mass	\checkmark	\checkmark				
Mass of Higgs candidate and q_1 from $W_{ m had}$	\checkmark	\checkmark				
$\Delta R(b_1 \text{ from Higgs candidate, } b_2 \text{ from Higgs candidate})$	\checkmark	\checkmark				
$\Delta R(b_1 \text{ from Higgs candidate, lep})$	\checkmark	\checkmark				
$\Delta R(b_1 \text{ from Higgs candidate, } b \text{ from } t_{ ext{lep}})$	-	\checkmark				
$\Delta R(b_1 \text{ from Higgs candidate, } b \text{ from } t_{\text{had}})$	–	\checkmark				