Dileptons with LHCb

Prospects on various aspect of the dilepton probe in hadronic physics

Manuel Guittière (IJCLab, LHCb collaboration) manuel.guittiere@ijclab.in2p3.fr

Laboratoire de Physique des 2 Infinis

25/11/2021

Study of dilepton production with LHCb

Drell-Yan production at low dimuon mass and forward rapidity:

- **pp**: probe the proton PDF at small Bjorken-*x*
- **pPb**: probe the gluon nPDF at small Bjorken-*x* (gluon saturation) and reference for nuclear modification in HF measurements
- Fixed target: probe high Bjorken-x region

Dimuon measurement with LHCb

LHCb = forward spectrometer (unique configuration at LHC): $2 < \eta < 5$

- VErtex LOcator (VELO): PV position, secondary vertex (HF background rejection)
- Tracking system: TT (upstream) + 3 Tracking stations (downstream)
- Muon system: 5 muon stations for muon identification

Low mass DY in pp collisions at 7 TeV

- **LHC**P
- Data sample: recorded in 2010 (LHC Run 1) pp collisions at 7 TeV: 37 pb⁻¹
- Muon reconstruction and ID:
 - Dimuon trigger with $p_T^{\mu} > 2.5 \text{ GeV/}c$
 - Matching VELO tracks with hits in the tracking stations
 - Muon identification using informations from all systems
- Selection of DY candidates ($5 \le M_{\mu\mu} \le 120 \text{ GeV}/c^2$):
 - Muon tracks with p > 10 GeV/c, $p_T > 3$ GeV/c and $2 \le \eta \le 4.5$
 - For M_{µµ} > 40 GeV/c²: p_T > 15 GeV/c
 - Z, Y, J/\u03c6 and J/\u03c6K control samples to check data/MC agreement and for efficiency studies

Background sources:

- HF semileptonic decays
- Pions and Kaons misidentification
- Y decays (below 10 GeV/c²)
- $\gamma^*/Z \rightarrow \tau \tau$ (when both τ decay to muons)

DY signal yield extracted from template fits

LHCb-CONF-2012-013

Low mass DY in pp collisions at 7 TeV

PDF sets:

CTEQXX

• MSTW08

NNPDF

Predictions:

- LO <u>PYTHIA 6.4</u>
- NLO <u>FEWZ</u> ($M_{\mu\mu} > 7 \text{ GeV/}c^2$)
- NLO <u>DYNNLO</u> ($M_{\mu\mu} > 12.5 \text{ GeV}/c^2$)
 - Good agreement between the measured DY cross-section and NLO predictions (FEWZ with 3 different sets of PDFs)
 - Data underestimated by PYHTIA (reasonable agreement in shape)
 - Only a small part of LHCb luminosity now available (~1fb⁻¹ for 2011)
 - Significant reduction of the uncertainties could be achieved at low mass with much larger control samples for template fits (dominant source of uncertainty: ~24% in the lowest mass interval)

LHCb-CONF-2012-013

Low mass DY in pp collisions at 7 TeV vs rapidity

снср

Predictions:

- LO <u>PYTHIA 6.4</u>
- NLO <u>FEWZ</u> ($M_{\mu\mu} > 7 \text{ GeV/}c^2$)
- NLO <u>DYNNLO</u> ($M_{\mu\mu} > 12.5 \text{ GeV}/c^2$)

PDF sets:

- <u>CTEQ</u>XX
- <u>MSTW08</u>
- <u>NNPDF</u>
- Good agreement between the measured cross section and FEWZ predictions vs rapidity
- Data underestimated by PYHTIA (reasonable agreement in shape)

LHCb-CONF-2012-013

Projections for DY in pPb at LHC Run 3 and 4

- Preliminary study in pp at 7 TeV used as a model for the projection study (similar analysis principle)
- Assumptions on Run 3 and 4 data samples:
 - Collisions at $\sqrt{s_{\rm NN}} = 8.8 \text{ TeV}$
 - Integrated luminosity for pPb data sample: 500 nb⁻¹
 - Integrated luminosity for pp data sample: 104 pb⁻¹
- pPb sample divided in rapidity bins with at least 1000 Z→µµ decays (as many as Run 1 pp measurement)
 - pPb forward: 2000 Z in 1.5 < y* < 2.5, 1600 in 2.5 < y* < 3.0 and 1000 in 3.0
 < y* < 4.5
 - pPb backward: 1000 Z in -3.2 < y^* < -2.5 and 1000 in -5.0 < y^* < -3.2
- Same sources of systematic uncertainties considered as in Run 1 measurement

LHCb-CONF-2018-005

Projections for DY in pPb at Run 3 and 4

- nPDF predictions from <u>EPPS16</u> at **Forward Backward** NLO $\mathbb{R}_{\mathrm{pPb}}$ $\mathbf{R}_{\mathrm{pPb}}$ LHCb projection $p \text{Pb} \sqrt{s_{NN}} = 8.8 \text{ TeV}$ backward, -2.0>y >-3.2, 250 nb⁻¹ 1.2 1.2 LHCb projection 1.1 Systematic and statistical 1.1 $p \operatorname{Pb} \sqrt{s_{NN}} = 8.8 \operatorname{TeV}$ forward, 1.5<y*<2.5, 250 nb⁻¹ uncertainties of similar size in low and 0.9 0.9 high (Z) mass regions 0.8 8.0 0.7 0. 0.6 0.6 Statistical limitation in intermediate 0.5^L 0.5 50 100 50 100 $M_{\mu^+\mu^-}$ [GeV/ c^2] $M_{\mu^+\mu^-}$ [GeV/ c^2] mass region R_{pPb} $\mathbb{R}_{\mathrm{pPb}}$ LHCb projection 1.2 1.2 LHCb projection $p \operatorname{Pb} \sqrt{s_{NN}} = 8.8 \operatorname{TeV}$ Forward (low mass): clear 1.11.1 $p Pb \sqrt{s_{NN}} = 8.8 TeV$ backward, -3.2>y*>-5, 250 nb-1 forward, 2.5<y*<3.0, 250 nb⁻¹ suppression expected due to 0.9 shadowing effect at low x 0.8 0 0.7 0.7 0.6 0.6 Backward: more complex structure 0.5^t 0.5 50 100 50 100 $M_{\mu^*\mu^-}$ [GeV/ c^2] $M_{\mu^+\mu^-}$ [GeV/c²] expected due to EMC effect $\mathbf{R}_{\mathrm{pPb}}$ 1.2 LHCb projection Uncertainty from control samples 1.1 $p \operatorname{Pb} \sqrt{s_{NN}} = 8.8 \operatorname{TeV}$ forward, 3.0<y*<4.0, 250 nb⁻¹ dominant at low mass (template fit for 0.9 signal extraction) 0.8 0.7
- ➡ Could be improved with a large sample in pp

LHCb-CONF-2018-005

•

50

100 $M_{\mu^{+}\mu^{-}}$ [GeV/c²]

0.6

0.5^E

Physics opportunities with the fixed-target program

- SMOG (upgraded to SMOG2 for LHC Run 3): fixed target by injection of gas into the LHC beam pipe
- Collision energy up to 115 GeV in the nucleon-nucleon c.m. frame

LHCb-PUB-2018-015

• LHCb SMOG: unique access to the large-x region at the LHC

Physics opportunities with the fixed-target program

	SMOG	SMOG	SMOG2
	published result	largest sample	example
	$p {\rm He} @87~{ m GeV}$	p Ne@69 ~GeV	pAr@115 GeV
Integrated luminosity	$7.6 \mathrm{~nb}^{-1}$	$\sim 100~{ m nb}^{-1}$	$\sim 45 \ \mathrm{pb}^{-1}$
syst. error on J/ψ x-sec.	7%	6 - 7%	2 - $3~%$
$J\!/\psi$ yield	400	15k	$15\mathrm{M}$
D^0 yield	2000	100k	150M
Λ_c^+ yield	20	1k	$1.5\mathrm{M}$
$\psi(2S)$ yield	negl.	150	150k
$\Upsilon(1S)$ yield	negl.	4	7k
Low-mass Drell-Yan yield	negl.	5	9k

SMOG2 upgrade:

- Increase of target density (luminosity) by up to 2 orders of magnitude
- Possibility to inject more gas species
- Possibility to run in parallel of pp collisions
- Constraints on gluon nPDF at high-x expected at the end of Run 3

LHCb-PUB-2018-015

- High luminosity LHC ~2031 (Run 5): increase of instantaneous luminosity by a factor ~50
- Upgrade phase II of the LHCb detector to allow measurements in HL-LHC heavyion conditions
- High performance of the VELO on background rejection + capacity of LHCb to measure low p_T muon tracks
- Measurements of intermediate mass dileptons in heavy-ion collisions accessible to LHCb?

See <u>Talk of M. Coquet</u>: « Intermediate mass dileptons as pre-equilibrium probes in heavy-ion collisions »

- The LHCb detector offers unique capacities for dilepton measurements at LHC in the forward region
- Low mass DY production measured in pp at 7 TeV (low luminosity)
- Projections for DY in pPb at LHC Run 3 and Run 4
- Precise measurements in high-x region at Run 3 with SMOG2
- Feasibility study on « Intermediate mass dileptons as pre-equilibrium probes in heavy-ion collisions »: <u>Talk of M. Coquet</u>

Thank you!

Template fit for DY yield extraction (mass bins)

Dileptons with LHCb - M. Guittière - 25/11/2021

Template fit for DY yield extraction (rapidity bins)

Dileptons with LHCb - M. Guittière - 25/11/2021