High mass dilepton measurements with ALICE at the LHC

Rita Sadek on behalf of the ALICE Collaboration

Jubatech

GDR QCD 25/11/2021

Study of Quark Gluon Plasma

Study of QGP properties:

- Thermalization
- Hydrodynamic expansion
- Transport coefficient
- Hadronization

...

Cold Nuclear Matter Effects:

- nPDFs modifications
- Energy loss

...

Possible final state effects

QCD study in vacuum:

...

Test of pQCD calculations Hadronization models

Rita Sadek 25/11/2021

A Large Ion Collider Experiment

K P

Time Projection Chamber: Charged particle tracking Particle identification

Inner Tracking System: Particle tracking Vertex reconstruction

V0: Trigger detector Event characterization

Time Of Flight:

3

Charged particle identification

Quarkonia: Regeneration vs Suppression

Quarkonia: Nuclear Modification Factor

$$R_{AA} = -\frac{1}{\langle}$$

* R_{AA} measurements of J/ψ have been done with ALICE at mid and forward rapidity at 5.02 TeV and for the $\Upsilon(1S)$ and $\Upsilon(2S)$ at forward rapidity.

High suppression due to color screening can be observed for both particles. * Regeneration effects visible at low $p_{\rm T}$ for J/ψ . For $\Upsilon(1S)$, the effects are negligible (in this model with/without regeneration).

 $dN_{AA}/dp_{\rm T}$ $\langle N_{coll} \rangle \quad dN_{pp}/dp_{\rm T}$

Collectivity

* Elliptic flow has been studied for J/ψ with ALICE at central and forward rapidity of Pb-Pb collisions at 5.02 TeV and for $\Upsilon(1S)$ at forward rapidity.

* $\Upsilon(1S)$: As expected, results fluctuate around 0. (Models in agreement with data with/without regeneration).

* J/ψ : Elliptic flow increases at low $p_T \rightarrow direct$ effect from regeneration. A decrease is then observed for $p_T \rightarrow 6$ GeV/c.

Cold Nuclear Matter Effects

J/ψ production in p-Pb collisions

* The R_{pPb} for J/ψ and $\psi(2S)$ in p-Pb collisions at 5.02 TeV and at 8.16 TeV measurements have been done with ALICE at central, forward and backward rapidity.

- * <u>Midrapidity</u>: strong J/ψ suppression at low $p_{\rm T}$ observed.

<u>Centrality dependance study:</u>

$\Upsilon(1S)$ production in p-Pb collisions

* R_{pPb} of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ in p-Pb and Pb-p collisions at 8.16 TeV measurements have been done with ALICE at forward and backward rapidity.

* Suppression of $\Upsilon(1S)$ at low $p_{\rm T}$ is observed for both rapidity regions —> nuclear shadowing influence. \bullet Models describe forward rapidity R_{pPb} , while overestimating the backward rapidity measurements.

* Data for v_2 at $p_T < 3$ GeV/c compatible with 0 —> in accordance with p-Pb expected v_2 measurements, small rate charm-quark production. * For 3 < p_T < 6 GeV/c, v_2 is positive and comparable to v_2 measurement done in Pb-Pb collisions (within uncertainties) —> responsible mechanism not understood, similar to Pb-Pb collisions?

* Measurements of the elliptic flow for inclusive J/ψ in p–Pb collisions done at forward and backward rapidity at 5.02 TeV and 8.16 TeV.

PDF & Photoproduction

Cross section of the Z-boson is compared with pQCD calculations and FEWZ calculations —> Results in agreement with calculations with and without nuclear modifications.

✤ <u>Right:</u>

Results in good agreement with calculations using three different nPDFs models. Without nPDF —> calculations overestimate data by 3.4σ .

✤ Measurements of Z-boson production in p—Pb collisions at 8.16 TeV and Pb—Pb collisions at 5.02 TeV is done at forward and backward rapidities.

Pb

ALI-PUB-482756

b-BK (BCCM)

-3

-2

Impulsive approximation:

Based on data from J/ψ photoproduction with protons, neglects all nuclear effects except for the coherence. Extracted nuclear suppression factor: $R_{\rho} = 0.65 \pm 0.03 ->$ Bjorken-x ~ 10^{-3}

No model describes data in both rapidity regions.

W

Pb

 \diamond Coherent photoproduction J/ψ and ψ' was measured in UPC Pb–Pb collisions at 5.02 TeV.

ALI-PUB-482756

Coherent J/ψ photoproduction

- * J/ψ measurements at low $p_{\rm T}$ performed in forward rapidity from peripheral to more central events in Pb-Pb collisions at 5.02 TeV.
- * Excess of J/ψ observed at very low $p_{\rm T}$, with $R_{AA} \sim 10$ for peripheral collisions in $p_{\rm T}$ region 0 < $p_{\rm T}$ < 0.3 GeV/c.
- Coherent photoproduction suggested as underlying mechanism.

ALI-PUB-341555

Coherent J/ψ photoproduction

- * J/ψ measurements at low $p_{\rm T}$ performed in forward rapidity from peripheral to more central events in Pb-Pb collisions at 5.02 TeV.
- * Excess of J/ψ observed at very low $p_{\rm T}$, with $R_{AA} \sim 10$ for peripheral collisions in $p_{\rm T}$ region 0 < $p_{\rm T}$ < 0.3 GeV/*c*.
- Coherent photoproduction suggested as underlying mechanism.

Small system & Multi-Parton Interaction

- * Measurements of J/ψ , $\psi(2S)$, $\Upsilon(1S)$ and $\Upsilon(2S)$ production as a function of charged particle multiplicity have been done in pp collisions at central and forward rapidity regions.
- Midrapidity region:

non trivial correlations observed —> yield increase stronger than linear expected trend as a function of multiplicity.

Forward rapidity region:

yield compatible with linear dependence on multiplicity.

Rita Sadek 25/11/2021

Outlook & Conclusions

ALICE for Runs 3 & 4

Increased Luminosity

For AA collisions an increase of a factor **10-100** (depending on observable)

Inner Tracking System 2: CMOS pixel, MAPS technology Improved resolution ~ Faster readout

New TPC Readout Chambers:

GEM technology, new electronics Continuous readout

Rita Sadek

Conclusions

Quarkonia: Regeneration vs Suppression in AA collisions Measurements presented on the J/ψ Nuclear Modification Factor and the elliptic flow in Pb-Pb collisions: Regeneration at low $p_{\rm T}$, suppression at high $p_{\rm T}$. Nuclear Modification Factor of $\Upsilon(1S)$ presented in Pb-Pb collisions along with the elliptic flow: Strong suppression, no participation in elliptic flow.

Cold Nuclear Matter Effects:

Measurements of Nuclear Modification Factor for J/ψ and $\Upsilon(1S)$ in p-Pb collisions presented. J/ψ elliptic flow measurements in p-Pb collisions: Collective behavior.

> PDF & Photoproduction:

Z-boson measurements presented: Cross section results well reproduced with models. Z-boson production calculations without nPDF overestimate data. Coherent J/ψ photoproduction in UPC Pb-Pb collisions. Excess of low $p_T J/\psi$ production —> coherent J/ψ photoproduction study in Pb-Pb collisions.

Small system & MPI:

Measurements of quarkonia multiplicity-dependent production: Difference observed between J/ψ production at mid and forward rapidity regions.

> ALICE in Runs 3 & 4:

Major improvements and upgrades, new results expected —> more precise and differential measurements.

Thank you for your attention!

Rita Sadek

- * Comparison of data for normalized inclusive J/ψ yield at as a function of charged particle multiplicity at midrapidity in pp collisions at 13 TeV with model predictions.
- Trend well described all by model calculations: calculations predict an increase faster than linear.
- ✤ CPP, CGC and 3-Pomeron models are in agreement with data.
- Different mechanisms predict the charged-particle multiplicity reduction: Color string reconnection or percolation, gluon saturation, coherent particle production, 3-gluon fusion in gluon ladders/Pomerons.

Rita Sadek 25/11/2021

