

Low mass dielectrons with ALICE 3

Goethe-Universitaet Frankfurt am Main, Germany

Raphaelle Bailhache

Right now: preparing for Run 3

ALICE tomorrow

Long Shutdown 3: preparation for Run 4, installation of ITS3 and FoCal

Heavy-ion physics goals of Run 3 + 4:

- Early temperature of the medium created in heavy-ion collisions with dileptons
- High-precision heavy flavour measurements: parton energy loss, hadronisation

ALICE 3 after tomorrow

Long Shutdown 4: installation of ALICE 3 for Run 5

Beyond 2030: qualitative steps in detector performance and luminosity

- Precision differential measurements of dileptons
- (Ultra-soft) real and virtual photon production
- Deconfinement and coalescence with multi-charmed baryons
- Heavy-flavour probes of the QGP

2032	2033	2034	2035	2036	
MJJASOND	Run 5	J FMAMJ J ASOND	ISSOND	J FMAMJ J ASOND	

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training

Temperature measurements

Dileptons:

- Slope of the m_{ee} spectrum in $1.1 < m_{ee} \le 2$ GeV/ c^2 \rightarrow Early-time temperature without radial flow effect
- Precise differential measurements of T with ALICE 3

Real photons:

• $p_{\rm T}$ spectrum of direct photons

 \rightarrow Time-average temperature affected by radial flow effect (Complementary to virtual photon measurements)

Elliptic flow measurements

 γ/γ^* elliptic flow sensitive to bulk & shear viscosity and **initial anisotropies** not accessible with hadronic probes

Dielectrons:

• Probe v_2 as function of time from low to high m_{ee} (and $p_{T,ee}$) \rightarrow Sensitivity limited with ALICE 2

Real photons:

• v_2 integrated over time

 \rightarrow Puzzle at RHIC, large uncertainties at the LHC with Run 2 data

B.S. Kasmaei and M. Strickland, PRD 99 (2019) 3, 043015

Chiral-symmetry restoration

Chirality conserved in QCD

Symmetry breaking \rightarrow 95% of the visible mass in the universe

Chiral symmetry restored at high T:

- Chiral partners (ρ and a_1 mesons) get similar masses and mix
- Accessible via $\rho \rightarrow e^+e^-$
- Broader ρ spectral function predicted and observed at lower energies [1]
- Predictions for ρ a_1 chiral mixing:
 - Affects thermal e^+e^- spectrum around $m_{ee} = 1 \text{ GeV}/c^2$
 - Better understand chiral-symmetry restoration mechanisms lacksquare
 - \rightarrow Sensitivity not reached with ALICE 2

[1] CERES/NA45, PRL 91 (2003) 042301, NA60 PRL 96 (2006) 162302

Electric conductivity of the medium

Fundamental transport properties of the medium not known Related to thermal γ/γ^* spectrum at very low p_T and m_{ee}

- Dielectrons:
 - Width of the thermal e^+e^- spectrum at low $p_{T,ee}$
 - At the boundary of ALICE 2 acceptance
- Real photons:
 - Direct γ yield at very low $p_{\rm T}$ via photon interferometry (HBT) No need of subtracting huge γ decay background WA98, Phys. Rev. Lett. 93 (2004) 022301
 - Need large statistics and low p_T coverage (ALICE 3)

ALICE 3 Workshop Oct 19, 2021

Detector overview

- Cover -4 < η < 4 rapidity range
- All-silicon tracker in super-conducting magnets
- Particle identification: **TOF**, **RICH**, **ECAL**, **MUON**
- Ultra-soft photons with Forward Converter Tracker
- Fast read-out and online processing

Detector overview

Could be installed in ALICE L3

Raphaelle Bailhache

10

- At mid-rapidity: 11 layers
- At forward- and backward-rapidity: 2x12 discs
- Vertex detector (3 first layers):
 - Retractable IRIS tracker in secondary vacuum
 - First layer at mid-rapidity at *r* = 5 mm (ITS3 18mm)

Compared to ALICE Run 4:

- \rightarrow Combinatoric background from conversion e^{\pm} / 2.
- → Better rejection of heavy-flavour background

Raphaelle Bailhache

11

Electron identification

- Cover a large rapidity range
- At mid-rapidity:
 - Inner TOF at 20 cm: low momentum down to $p_T = 15$ MeV/c for B = 0.5 T (ALICE: 75 MeV/c for B = 0.2 T)
 - Outer TOF and RICH at about 1m: intermediate momentum (p < 2 GeV/c)
 - ECAL detector: larger *p*

12

Dielectron raw spectrum

- Simulated raw e^+e^- spectrum in 0-10% central Pb-Pb collisions for one month running using outer TOF + RICH
- Different contributions:
 - Light-flavour hadron decays
 - Thermal radiations (signal):
 - from hadron gas
 - from QGP
 - Heavy-flavour hadron decays (cc, bb) suppressed using DCA to primary vertex

Simulated e^+e^- raw spectrum with uncertainties

Dielectron excess Chiral symmetry restoration

- Simulated excess = thermal radiation e^+e^- spectrum after subtraction of light- and heavy-flavour background
- Comparison with different ρ spectral functions (SF):
 - Vacuum SF
 - In medium SF w/o ρ -a₁ chiral mixing
 - In medium SF w/ ρ -a₁ chiral mixing

Expect be sensitive to ρ **-a**₁ **chiral mixing with ALICE 3**

Excess e^+e^- raw spectrum with uncertainties

R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253 P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103 R. Rapp private communication

Dielectron excess Early-time temperature

- Extract early-time T of the medium from the m_{ee} excess spectrum: $dN/dm_{ee} \sim exp(-m_{ee}/T)$
- Differential measurements of T possible with ALICE 3 • Larger $p_{T,ee} \rightarrow earlier emission$

Excess e^+e^- raw spectrum with uncertainties

R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253 P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103 R. Rapp private communication

Dielectron excess Early-time temperature

- Extract early-time *T* of the medium from the m_{ee} excess spectrum: $dN/dm_{ee} \sim exp(-m_{ee}/T)$
- Differential measurements of *T* possible with ALICE 3 lacksquareAs a function of $p_{T,ee}$ or in different m_{ee} ranges (under studies)

Complementary measurement planned with real direct photons

Extracted temperature

Statistical errors \approx 1.5% for $0 < p_{\rm T.ee} < 4$ GeV/c

ALICE 2 Run 4: 4% from previous studies

Dielectron elliptic flow

$$v_2^{\text{prompt}} = \frac{\pi}{4} \frac{1}{R_2} \frac{N^{\text{INP}} - N^{\text{OOP}}}{N^{\text{INP}} + N^{\text{OOP}}}$$

 $N^{\text{INP}}, N^{\text{OOP}}$: prompt e⁺e⁻ yields in- and out-of-plane R_2 : resolution of the reconstructed event plane

Expected v_2 for all (prompt) and excess e^+e^- in 30-50% Pb-Pb collisions

- Statistical uncertainty for 6 years of data taking
- $v_2(p_{T,ee}, m_{ee})$ studies statistically possible with ALICE 3

Dielectron v_2 in 30-50% central Pb-Pb collisions

Raphaelle Bailhache

G. Vujanovic et al. PRC 101 (2020) 044904

17

Electric conductivity

Dielectrons at very low $p_{T,ee}$ and m_{ee} :

- Room for possible measurements above m_{π^0} \rightarrow Need to go lower in $p_{T,e}$ than ALICE (inner TOF in ALICE 3)
- measurements of π^0 , η mesons crucial at very low p_T
- $\gamma\gamma \rightarrow e^+e^-$ background under investigation

R. Rapp, EMMI RRTF Sept 13, 2021 ALICE 3 Workshop Oct 19, 2021

Beyond Run 3/4 we would need ALICE 3 to:

- Identify the chiral mixing between ρ and a_1 mesons
- Access to the dynamics of the very early stages of the heavy-ion collision with: Elliptic flow measurements as a function of m_{ee} and $p_{T.ee}$
- Explore e^+e^- spectrum at very low m_{ee} and $p_{T,ee}$ (electric conductivity...)
 - Measure super soft dielectrons as a complementary probe to soft photons

- Measurement of real photons with ALICE 3:
 - Via γ conversion and calorimeters
 - Forward Converter Tracking at $3 < \eta < 4$ \rightarrow Very low $p_{\rm T}$ photons
- Large rapidity coverage of ALICE 3: Very soft γ , γ^* at forward rapidity
- ALICE 3 Letter Of Intent in preparation

Non-QGP physics

• Ultra-soft photons:

- At very low p_{T} , γ produced via inner bremsstrahlung \rightarrow Cross section computable without model- and process-dependence (Low-theorem)
- Very low p_T means: γ wavelength exceeds dimension of any hadronic or nuclear system \rightarrow Easier to reach in small systems (pp collisions)
- Previous measurements: excess of soft photon in association with hadrons **ALICE 3: test Low-theorem in pp collisions**

• Others:

- Nuclei: search for super-nuclei (light-nuclei with c)....
- Interaction potentials between charmed baryons and nucleons via femtoscopic correlation
- Beyond Standard Model studies (axion-like particles...)

WA102 at CERN SPS: Photon production

Electron efficiency and purity at mid-rapidity

- e[±] identified with outer TOF and RICH (1m)
- TOF alone limited to narrow $p_{\rm T}$ region
- TOF+RICH achieve high efficiency with negligible contamination up to 2 GeV/c

Prospects on various aspects of the dilepton probe in hadronic physics, 25.11.2021

Contamination

Green scenario in the next slides

Tracker performance at mid-rapidity

Very good pointing resolution:

- Pointing resolution for $p_{T,e} = 0.1$ GeV/c in transverse plane:
 - About 200 m for ITS2 (Run 3)
 - About 100 m for ITS3 (Run 4)
 - About 20 m for ALICE 3
- Similar pointing resolution in the longitudinal plane

 \rightarrow Help to reconstruct or reject heavy-flavour

24

Luminosity projections

- Ongoing discussions with machine groups to establish projections for 2030s
- Current assumptions for physics projections:

	levelling	evelling limited by machine							
	pp	0-0	Ar-Ar	Ca-Ca	Kr-Kr	In-In	Xe-Xe	Pb-Pb	
⟨L _{AA} ⟩ (cm ⁻² s ⁻¹)	3.0·10 ³²	9.5·10 ²⁹	2.0 · 10 ²⁹	1.9·10 ²⁹	5.0·10 ²⁸	2.3·10 ²⁸	1.6·10 ²⁸	3.3 · 10 ²⁷	
⟨L _{NN} ⟩ (cm-² s-1)	3.0·10 ³²	2.4 · 1032	3.3 · 1032	3.0·1032	3.0·1032	3.0 · 1032	2.6 · 1032	1.4 · 1032	
Гла (nb-1 / month)	5.1 · 10 ⁵	1.6 · 10³	3.4·10 ²	3.1·10 ²	8.4·10 ¹	3.9·10 ¹	2.6·10 ¹	5.6·10 ⁰	
£им (pb-1 / month)	505	409	550	500	510	512	434	242	

• Total luminosity increase 2-10 x wrt to Run 3 + 4, depending on collision system (Larger increase for lighter collision system) Run 3 + 4: 13 nb⁻¹ Pb-Pb, 200 pb⁻¹ pp

- In proton-proton: hadronisation via string fragmentation
- In QGP: coalescence/thermal production contributions
- Multi-charm baryons:
 - Charm quark produced in initial hard scattering
 - Multi-charm baryons: produced mostly via coalescence
 - \rightarrow Large enhancement in AA (large $\sigma_{c\bar{c}}$)
 - \rightarrow Sensitive to the equilibrium properties of charm in the QGP

ALICE: charmed baryons, ALICE 3: multi-charm baryons

- In proton-proton: hadronisation via string fragmentation
- In QGP: coalescence/thermal production contributions
- Multi-charm baryons:
 - Charm quark produced in initial hard scattering
 - Multi-charm baryons: produced mostly via coalescence
 - \rightarrow Large enhancement in AA (large $\sigma_{c\bar{c}}$)
 - \rightarrow Sensitive to the equilibrium properties of charm in the QGP

ALICE: charmed baryons, ALICE 3: multi-charm baryons

SHM predictions u,d,s only particles in black and (multi-)charm states in red

- In proton-proton: hadronisation via string fragmentation
- In QGP: coalescence/thermal production contributions
- Multi-charm baryons:
 - Sensitive to the equilibrium properties of charm in the QGP
 - ALICE: charmed baryons, ALICE 3: multi-charm baryons
- Quarkonium measurements beyond S-wave States:
 - Measurements currently limited to S-wave states: J/Ψ , $\Psi(2S)$, $\Upsilon(nS)$
 - χ_c, χ_b states with ALICE 3 down to $p_T = 0$

Charmonium states

- In proton-proton: hadronisation via string fragmentation
- In QGP: coalescence/thermal production contributions
- Multi-charm baryons:
 - Sensitive to the equilibrium properties of charm in the QGP
 - ALICE: charmed baryons, ALICE 3: multi-charm baryons
- Quarkonium measurements beyond S-wave States:
 - Measurements currently limited to S-wave states: J/Ψ , $\Psi(2S)$, $\Upsilon(nS)$
 - χ_c, χ_b states with ALICE 3 down to $p_T = 0$
- Heavy-flavour exotica:
 - X(3872) discovered in 2003: nature not clear **Measurement down to low-***p***^T with ALICE 3**
 - Many other states expected but not yet discovered

Possible nature of X(3872) state

Heavy-flavour probes of the QGP

Parton-medium interactions via heavy-flavour correlations

- $\Delta\eta, \Delta\varphi$ correlation of heavy-quark pairs:
 - radiative energy loss (small broadening)
 - collisional energy loss (larger broadening)
 - "thermalization" (randomization)

ALICE 3: $D\overline{D}$ correlation over wide rapidity range

• Energy loss and approach to thermalization:

- Photon-HF jet correlation: ALICE 3: down to low p_T over wide rapidity range
- Heavy-flavour baryon flow (including beauty): ALICE 3: Λ_c , $\Lambda_b v_2$ down to low p_T
- Heavy-flavour jet substructure....

 $D^0 D^0$ correlation

Superconducting magnets

- One large cryostat: 7m long
 - Solenoidal field in the centre
 - Dipole components forward/backward
- Magnetic field can be changed (Running scenarios under discussion)
- Good momentum resolution over large η range

Momentum resolution versus η

Raphaelle Bailha

η

Differential measurements of e⁺e⁻

Dileptons produced at all stages of the heavy-ion collision: larger $m_{ee} \rightarrow e^+e^-$ emitted earlier

- Hadron gas: modification of the ρ spectral function (chiral symmetry restoration)
- Quark-Gluon-Plasma: thermal radiations from the QGP
- Pre-equilibrium/pre-hydrodynamic phase: radiations from the medium before hydrodynamic phase

Raphaelle Bailhache

Differential measurements of e⁺e⁻

Dileptons produced at all stages of the heavy-ion collision: larger $m_{ee} \rightarrow e^+e^-$ emitted earlier

- Hadron gas: modification of the ρ spectral function (chiral symmetry restoration)
- Quark-Gluon-Plasma: thermal radiations from the QGP
- Pre-equilibrium/pre-hydrodynamic phase: radiations from the medium before hydrodynamic phase

Raphaelle Bailhache

Differential measurements of e⁺e⁻

Dileptons produced at all stages of the heavy-ion collision: larger $m_{ee} \rightarrow e^+e^-$ emitted earlier

- Hadron gas: modification of the ρ spectral function (chiral symmetry restoration)
- Quark-Gluon-Plasma: thermal radiations from the QGP
- Pre-equilibrium/pre-hydrodynamic phase: radiations from the medium before hydrodynamic phase

Sources of correlated dielectrons

- 0-10% central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV
- Thermal radiation signal (R.Rapp):
 - from hadron gas
 - from the QGP
- Hadronic cocktail calculations based on Run 2 data
 - long-lived light-flavour hadron decays
 - Heavy-flavour hadron decays based on pp measurements with EPS09 cold-nuclear matter effects:
 - open-charm
 - open-beauty

Correlated dielectron raw spectrum

ALI-SIMUL-498024

Suppress correlated heavy-flavour background

• Suppress heavy-flavour contributions with:

$$DCA_{ee} = \sqrt{\frac{(DCA_{xy,1}/\sigma_{xy,1})^2 + (DCA_{xy,2}/\sigma_{xy,2})^2}{2.}} \rightarrow DCA_{ee}(prompt) < DCA_{ee}(he)$$

- With ALICE 3 and a maximum cut on DCA_{ee} at 1.2 σ :
 - Keep 73% of signal/prompt e⁺e⁻
 - Reject:
 - 94% of $c\bar{c} \rightarrow e^+e^-$
 - 98% of $b\bar{b} \rightarrow e^+e^-$
- With ITS2 (ITS3) for the same rejection factor for $c\bar{c} \rightarrow e^+e^$ keep only about 17%(30%) of signal/prompt e^+e^-

Thermal radiations dominate the spectrum for $m_{ee} > 0.4 \text{ GeV/}c^2$ (outside of the ω and ϕ peaks)

Combinatoric background

- Correlated dielectron yield (S) obtained in real data by:
 - Pairing all identified e^- and e^+ from the same event
 - Subtracting the contribution from combinatoric pairs (B)
- **Combinatoric background** estimated with:
 - e^-e^- and e^+e^+ pairs from the same event
 - PYTHIA 8 Angantyr event generator weighted to reproduce π^{\pm} and b, c \rightarrow e measurements

• Statistical unc. of S given by the significance
$$(\frac{S}{\sqrt{S+2B}})$$

Correlated dielectrons and combinatoric pairs

Suppress combinatoric background

Signal

Combinatoric from two different π^0 decays

• Combinatoric background dominated by independent π^0 decays

- Can be reduced by pre-filtering the tracks:
 - searching for the partner e^{\pm} of the Dalitz decay $\pi^0 \rightarrow \gamma e^+ e^-$:
 - down to $p_{\rm T}$ = 0.08 GeV/c with oTOF+RICH (default)
 - down to $p_{\rm T}$ = 0.02 GeV/c with MC PID
 - If one possible partner is found (small m_{ee} and opening angle) \rightarrow Reject the e^{\pm} candidate from the analysis
- Low $p_{\rm T}$ tracking and eID important to increase S/B and significance for $m_{\rm ee} > 1.1$ GeV/ c^2

Correlated dielectrons and combinatoric pairs

Suppress combinatoric background

Signal

Combinatoric from two different π^0 decays

• Combinatoric background dominated by independent π^0 decays

- Can be reduced by pre-filtering the tracks:
 - searching for the partner e^{\pm} of the Dalitz decay $\pi^0 \rightarrow \gamma e^+ e^-$:
 - down to $p_{\rm T}$ = 0.08 GeV/c with oTOF+RICH (default)
 - down to $p_{\rm T}$ = 0.02 GeV/c with MC PID
 - If one possible partner is found (small m_{ee} and opening angle) \rightarrow Reject the e^{\pm} candidate from the analysis
- Low $p_{\rm T}$ tracking and eID important to increase S/B and significance for $m_{\rm ee} > 1.1$ GeV/ c^2

Signal over background

Suppress combinatoric background

Signal

Combinatoric from two different π^0 decays

• Combinatoric background dominated by independent π^0 decays

- Can be reduced by pre-filtering the tracks:
 - searching for the partner e^{\pm} of the Dalitz decay $\pi^0 \rightarrow \gamma e^+ e^-$:
 - down to $p_{\rm T}$ = 0.08 GeV/c with oTOF+RICH (default)
 - down to $p_{\rm T}$ = 0.02 GeV/c with MC PID
 - If one possible partner is found (small m_{ee} and opening angle) \rightarrow Reject the e^{\pm} candidate from the analysis
- Low $p_{\rm T}$ tracking and eID important to increase S/B and significance for $m_{\rm ee} > 1.1$ GeV/ c^2

Significance

Significance increased by a factor about 1.6 (default)

Dielectron measurement

• Statistical uncertainties:

- Expected signal from sampling data according to the expected significance
- Assume 5.6 nb⁻¹ integrated luminosity for one month running Pb-Pb
- Systematic uncertainties assumed:
 - 5% from tracking and PID on e^+e^- yield
 - 0.02% on the background estimation *B* (Inspired from sys. unc. on *R* factor observed in Run 2 ALICE data)

41

Dielectron elliptic flow

$$v_2^{\text{prompt}} = \frac{\pi}{4} \frac{1}{R_2} \frac{N^{\text{INP}} - N^{\text{OOP}}}{N^{\text{INP}} + N^{\text{OOP}}}$$

 $N^{\text{INP}}, N^{\text{OOP}}$: prompt e⁺e⁻ yields in- and out-of-plane R_2 : resolution of the reconstructed event plane

Expected v_2 for all (prompt) and excess e^+e^- in 30-50% Pb-Pb collisions

- Statistical uncertainty for 6 years of data taking
- $v_2(p_{\text{T,ee}}, m_{\text{ee}})$ studies statistically possible with ALICE 3

ECal detector under study for higher in $p_{T,ee}/m_{ee}$ Access to pre-hydrodynamic phase

Raphaelle Bailhache

G. Vujanovic et al. PRC 101 (2020) 044904

Dielectron elliptic flow

$$v_2^{\text{prompt}} = \frac{\pi}{4} \frac{1}{R_2} \frac{N^{\text{INP}} - N^{\text{OOP}}}{N^{\text{INP}} + N^{\text{OOP}}}$$

 $N^{\text{INP}}, N^{\text{OOP}}$: prompt e⁺e⁻ yields in- and out-of-plane R_2 : resolution of the reconstructed event plane

Expected v_2 for all (prompt) and excess e^+e^- in 30-50% Pb-Pb collisions

- Statistical uncertainty for 6 years of data taking
- $v_2(p_{\text{T,ee}}, m_{\text{ee}})$ studies statistically possible with ALICE 3

 $1.1 < m_{ee} < 1.5 \text{ GeV/c}^2$

G. Vujanovic et al. PRC 101 (2020) 044904

Electric conductivity

Compare thermal dielectron yield at low m_{ee} with cocktail of light-flavour hadron decays without single p_{T} cut on electrons

- Need to go lower in $p_{\rm T.e}$ than ALICE 2

• Some room for possible measurements above m_{π^0} for $p_{\text{T.ee}} < 0.03$ GeV/c: measurements of π^0 , η mesons crucial at very low p_{T}

ALICE 3 soft-photon strategy

Reactions/Systems where to look:

- Clean exclusive process like $pp \rightarrow pp\pi^+\pi^-\gamma$
 - Precise calculations for pp $\rightarrow pp\pi^+\pi^-\gamma$ exist
- Inelastic (non-diffractive) pp collisions
- Reactions/systems with higher charged particle multiplicities

 \rightarrow Take advantage of the large rapidity coverage of ALICE 3:

- To select exclusive process
- To measure charged particle multiplicity in more complicated reactions/systems

• Rapidity where to measure:

- Need to measure γ with $p_T \leq 5$ MeV due to decay γ background n
- Low E photon measurement possible down to $E \approx 50-100$ MeV via conversion Gain a factor 10, 27 and 74 in p_T going to $\eta = 3, 4, 5$ $(E/p_T = cosh(\eta))$

 \rightarrow Forward Conversion Tracker covering $3 \le \eta \le 5$

Forward Conversion Tracker

Can measure γ down to $E_{\gamma} \approx 50$ MeV $\rightarrow 1 \le p_{\rm T} \le 10$ MeV accessible at forward rapidity:

Prospects on various aspects of the dilepton probe in hadronic physics, 25.11.2021

Background

• Signal: Inner bremsstrahlung γ

Background:

- Decay photons ($\pi^0 \rightarrow e^+e^-$)
- External bremsstrahlung (study on going):

- Minimize material in front of FCT
 - Avoid crossing of the beam pipe at shallow angles ($d = d_{\perp} cosh\eta$)
 - To reach a measurement with 3σ significance
 - \rightarrow Need to limit material in front of FCT to \leq 14% X_0 assuming 5% unc. on the background
- Develop strategy to reject events with e^+/e^- in the η range of the FCT

For an overview: see K. Reygers ALICE 3 Workshop 19.10.2021

