GDR QCD Workshop on Dilepton Probes in Hadronic Physics

November 25, 2021, IJClab – Orsay

Low-Mass Dileptons with ALICE, and prospects for NA60+

Antonio Uras

IP2I - Lyon – CNRS/IN2P3

Low-mass dilepton measurements with ALICE

- Recent results from Run1+Run2
- Prospects for Run3+Run4

Low-mass dilepton measurements with NA60+

- The NA60+ project
- > Expected performance for low-mass dimuon measurements

Dileptons with ALICE

Dilepton Measurement With ALICE in Run1+Run2

◆ Dielectrons → |η|< 0.9
 Central Barrel: Inner Tracking
 System + Time Projection
 Chamber + Time Of Flight

\Rightarrow Dimuons \rightarrow 2.5 < η < 4

Muon Arm: Tracking Chambers + Muon Trigger

System	Analysed luminosity
pp $\sqrt{s} = 5.02 \text{ TeV}$	19.93 nb ⁻¹
p-Pb $\sqrt{s_{\rm NN}} = 5.02 {\rm TeV}$	0.299 nb ⁻¹
Pb-Pb $\sqrt{s_{ m NN}} = 5.02 \ { m TeV}$	10 µb ^{−1}
pp \sqrt{s} = 13 TeV (B=0.2T)	9.38 nb ⁻¹
pp $\sqrt{s} = 13$ TeV (Muons)	36 pb ⁻¹

Dielectron Production in pp Collisions

Mass spectrum compared with cocktail of known hadronic sources

- Data well described by cocktail within uncertainties
- Similar results in pp collisions at 7 and 13 TeV
- Important baseline for p-Pb and Pb-Pb at 5.02 TeV

Heavy-flavour contributions dominate for $m_{ee} > 1.1 \text{ GeV}/c^2$

Antonio Uras

• Complementary (w.r.t. heavy-flavour hadron measurements) σ_{bb} and σ_{cc} measurements

Dielectron Production in p-Pb Collisions

Spectrum in good agreement with cocktail of known hadronic sources

✤ Heavy flavour from PYTHIA or POWHEG based on N_{coll} scaled measured σ_{bb} and σ_{cc} at 7 TeV. Current precision doesn't allow for conclusions on potential cold nuclear matter effects

$R_{\rm pPb}$ vs $m_{\rm ee}$:

- Deviation from unity for m_{ee} < 1 GeV/c² (expected since light flavor sources don't scale with N_{coll})
- Compatible with unity in the intermediate mass region

Dielectron Production in Central Pb-Pb

Most central Pb–Pb events (0-20%):

Hint of enhancement in the low mass region (0.14 < m_{ee} < 0.54 GeV/ c^2). Consistent with the prediction for QGP radiation and in-medium effects by R. Rapp

Soft Dielectron Production in Pb-Pb

Clear excess observed at low $p_{\rm T}$ in peripheral Pb–Pb:

 Consistent with coherent photoproduction, similar to the observation by STAR

Antonio Uras

Soft Dielectrons in pp

CERN ISR – AFS (1987): Excess of dielectrons over expectation from known hadronic sources in an "elementary" collision system

- 1.6 σ excess also observed by ALICE in a dedicated run with a reduced mag. field (to improve acceptance at low mass and low p_T)
- This excess cannot be explained with contributions from known hadronic decays

Low-Mass Dimuon Production

Low-Mass Dimuon Spectrum: good agreement between signal and MC

Eur.Phys.J.C 81 (2021) 8, 772

No dedicated vertex detector: limited knowledge on the continuum composition, limited control on the HF sources

Good signal/background + dedicated muon trigger: clean signal extraction for the 2-body decays of light vector mesons

ALI-PUB-485971

Anto

10/20

Antonio Uras

Low-Mass Dileptons with ALICE, and prospects for NA60+

ALICE Upgrades for Run3+4

New Inner Tracking System (ITS)

New pixel technology: improved granularity and resolution, reduced material budget

CERN-LHCC-2013-024, CERN-LHCC-2013-024

New Forward Muon Tracker (MFT)

Vertex tracker for the forward muon spectrometer: heavy flavor vertices, prompt/displaced muon discrimination

TPC Upgrade:

11/20

 Replacement of the MWPC-based readout
 by detectors employing
 GEMs to allow TPC
 operation in continuous
 mode

Upgraded read-out for many detectors, new integrated Online-Offline (O²), new Fast Interaction Trigger detector

Upgraded ALICE will record Pb-Pb data at 50 kHz (1 kHz in Run 2)

Low-Mass Dileptons with ALICE in Run3+4

- Low and intermediate mass dileptons both in the dielectron (mid rapidity) and dimuon (forward rapidity) channels: isolation of medium-modified ρ; thermal radiation from QGP
- Improved precision in the measurement of dilepton offset, for the isolation of prompt sources
- Improvement of the mass resolution for light resonances in the dimuon channel

Dileptons with the NA60+ Projects

The NA60+ Project

Investigate the large μ_{B} region of the QCD phase diagram through the study of hard and electromagnetic probes at the CERN SPS

- Hard probes: onset of deconfinement, transport properties of the medium
- E.M. probes: insights on temperature of the system, chiral symmetry restoration, order of the phase transition

CERN SPSC 2019 017

Detector concept: muon spectrometer →
dimuon measurements + vertex telescope
→ reconstruct tracks close to the IP

Setup changes with beam energy to cover the region around midrapidity

Low-Mass Dimuons With NA60+

- Thermal dimuon distributions from
 R. Rapp et al., PLB753 (2016) 586
- Hadron cocktail from NA60 and statistical model (Becattini et al., PRC73 (2006) 044905)
- Drell-Yan and open charm from PYTHIA
- Combinatorial background: input spectra from NA49 measurements
- $\geq 2 \times 10^7$ reconstructed central Pb-Pb (1 month data taking at interaction rate ≈ 1 MHz)
- > S/B \approx 1/18 at M = 0.6 GeV/c²
- Combinatorial background subtracted with 0.5 % uncertainty
- \succ Factor \approx 100 improvement with respect to NA60

T_{slope} Measurement in NA60+

- * Thermal radiation: dominated by ρ contribution at low mass; accessible up to M \approx 2.5 3 GeV/c²
- Drell-Yan contribution to be estimated via p-A measurements
- Acceptance-corrected spectra fitted with $dN/dM = M^{3/2} \exp(-M/T_s)$ in 1.5 < M < 2.5 GeV/c²
- Caloric curve: accurate mapping of the region where the pseudocritical temperature is reached, sensitive to potential effects expected in case of 1st order phase transition!

Sensitivity to Chiral Symmetry Restoration

Simulations carried out by considering the alternative scenarios:

- No chiral mixing (dip in the region. $1 < M < 1.4 \text{ GeV/c}^2$
- Full ρ -a₁ chiral mixing

A 20-30% enhancement is expected in case of full mixing (modelled from R. Rapp, H. van Hees, PLB753 (2016) 586)

> With the foreseen accuracy of the measurement, the effect can be clearly detected

NA60+ Project Status and Tentative Timescale

- **Toroid:** Completion of the prototype construction (scale 1:5), first tests carried out (low current)
- Muon tracking stations based on GEM modules: discussions ongoing with interested Institutes
- **Tipole:** CERN MEP48 dipole magnet (B \approx 1.5 T at max current, up to 21° polar angle coverage)
- Silicon vertex tracker: 5 to 10 planes, large area MAPS with stitching technology (same as ITS3 ALICE 3)
 - Thickness: o(20 μm)
 - > Pixel size: $o(15 \times 15 \,\mu\text{m}^2)$
 - > No mechanical support/cooling in the sensitive area \rightarrow material budget < 0.1% X₀
 - Spatial resolution: 5 μm or better

Low-Mass Dileptons with ALICE, and prospects for NA60+

NA60+ Project Status and Tentative Timescale

Discussions on the installation site recently converged: installation foreseen at the CERN-SPS, EHN1 hall, H8 beam line

- Intensity: 10⁷ Pb ions per 20 s spill (radioprotection studies ongoing)
- The setup can be moved on rails along the beam axis. High energy setup: muon spectrometer shifted forward by 3.3 m

Goal: start data taking with LHC run 4, around 2027

Antonio Uras

Conclusions

Electromagnetic radiation in heavy-ion collisions, in the form of dilepton emission, continues to illuminate the properties of the formed medium: comprehensive set of measurements from ALICE, ranging from pp to central Pb-Pb events

- Precision dilepton measurements are needed both at the LHC and FAIR-SPS energies to develop a consistent picture across the whole QCD phase diagram
- Clear synergies between ALICE 2 and the ALICE 3 and NA60+ projects both in terms of detector R&D, analysis tools, and interpretation of physics observations

Backup Slides

Dileptons: EM Emission Rate and Correlator

