

Laser-driven ion acceleration and applications at IN2P3

DMLab Scientific Kickoff Meeting

December 9-10th, DESY, Hamburg, Germany

Laser driven ion source with solid targets

Target Normal Sheath Acceleration (TNSA)

M. ROTH et al., Ion Acceleration—Target Normal Sheath Acceleration. CERN Yellow Reports, [S.I.], v. 1, p. 231, feb. 2016.

Laser driven ion source with solid targets

- peak intensity > kA of protons in a ~ps bunch duration
- TNSA well known, reliable, suitable energies BUT not compatible with new generation of lasers

Laser driven ion source with gas jet targets

Because of high-repetition rate lasers (0,01-10 Hz) :

Commercial lasers : 100's of TW @ few Hz :

Research facilities :

Advantages of gaseous targets

10 PW every minute

- Target regeneration and alignment
- ✓ Less debris production (25 weeks of GSI/PHELIX \approx 2 min ELI-BL HAPLS@10Hz)
- Easy access to different ions
- Promote acceleration processes for high energies, high flux of ions and no Boltzmann energy distribution

extreme light infrastructure

1 PW every 0.1 second

THALES

Laser driven ion source with gas jet targets

Collisionless Shock Acceleration (CSA)

Observed on CO₂ laser (10 µm wavelength) Dan Haberberger et al., Nature Physics, vol8, 95-99 (2012)

High Repetition Rate lasers are 1 µm wavelength

 \rightarrow Critical density : 10²¹ atom/cm³

Laser driven ion source with gas jet targets Our target

Laser driven ion source with gas jet targets Our first experiment

Puyuelo-Valdes, Proc. SPIE 11037, Laser Acceleration of Electrons, Protons, and Ions V, 110370B (2019) Puyuelo-Valdes et al., Phys Plasma, 26, 123109 (2019)

Laser driven ion source with gas jet targets Our simulations

Particle In Cell simulations : PICLS

Structure formation in the energy spectra in forward direction

Laser interacts in low density part of gas jet target

Laser driven ion source with gas jet targets

To promote the CSA process ... the Plasma Tailoring

Experiment at GSI in November 2020 : structures of energy distribution confirmed, but energy around 4 – 5 MeV

J.-R. Marques, et al., Phys Plasma, 28, issue 2, (février 2021)

J.Bonalet et al., Phys Plasma, 28, 113102 (nov 2021)

Application : medical radioisotope production

Apollon F1

Even without optimization, during a laser shot we produce in our experiments few kBq/shot of ¹¹C ; ¹⁸F ; ¹³N

Total activity of ¹¹C (circles) and ¹⁸F (triangle) generated by one single laser shot as a function of its irradiance. The upper shaded area represents the activities used in medicine.

K.W.D. Ledingham and W. Galster, New Journal of Physics 12, 045005 (2010)

Conclusions

- New generation of high power lasers at High Repetition Rate (HRR) will give a new thrust to laser plasma acceleration
- Some issues need to be fixed before using the HHR capabilities of the lasers (knowledge on acceleration process, targets, diagnostics, ...): well-established laser facilities are mandatory (PHELIX/GSI)
- Gas jet targets are promising for HHR facilities, promoting interesting acceleration processes for energy and angular distribution
- A short-term application is the production of medical radioisotopes
- A medium-term application would be the production of short-lived radioisotopes for nuclear physics studies in transient astrophysical type plasmas created with high power lasers