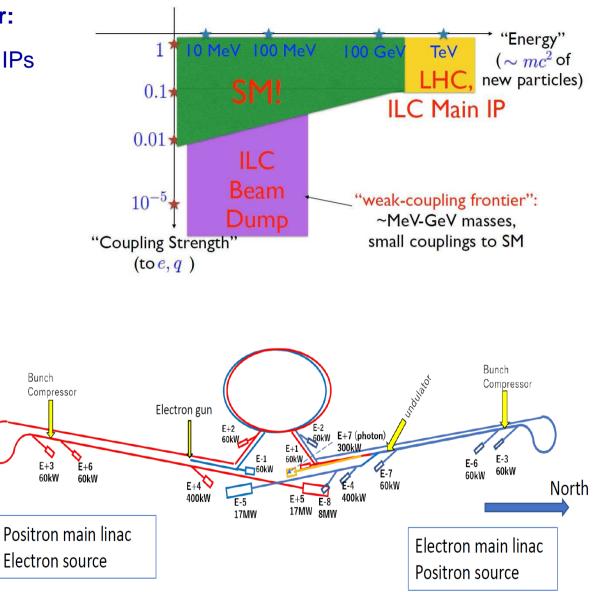
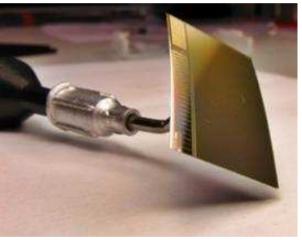
Future Ultra-Light Pixelated Tracking Devices

M. Winter (IJCLab-Orsay) on behalf of DESY-IPHC-GSI-IJClab (DIGI) coll.

(DMlab kick-off – 9 Decembre 2021)

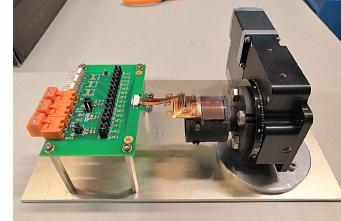

Contents

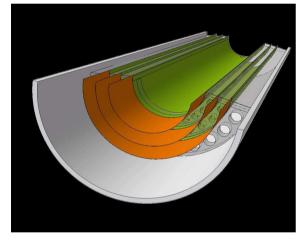
- Physics objectives: search of DM particles
- Overview
- Double-sided detector modules
- Ultra-thin detector layers
- Context & Partners
- Summary


SOURCES: PLUME coll., Nucl. Instr. Meth. A650 (2011) 208-212; CREMLInplus EU project (WP-7), H2020-INFRASUPP-2018-2020; ALICE coll, CERN-LHCC-2019-018 / LHCC-I-034; R. Brenner et al., CERN-LHCC-2017-002 ; LHCC-I-028 C. Garuglio (ITS-3), Forum on Tracking Detector Mechanics, 2021

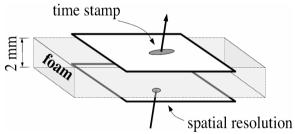
Tracking and Search for DM at an e^+e^- Collider

- Search for DM candidates at an e^+e^- collider:
 - multipurpose experiments installed around the IPs
 beam dumps absorbing e[±], γ beam remnants
- High performance tracking essential for the search of DM candidates:
- Reconstructing DM decay products:
 - * in crowded final states (e.g. H decay at IP)
 - * in boosted final states (e.g. beam dump)
- Reconstructing precisely all tracks produced:
 - * imposes suppressed material budget
 - * calls for excellent coverage
- Synergies underlying the partnership:
- all Higgs factories (e.g. FCCee), LHCpp
- Heavy ion collisions: CBM/FAIR, ALICE/LHC


Developping Novel Tracking Performances Based on Thin CMOS Pixel Sensors

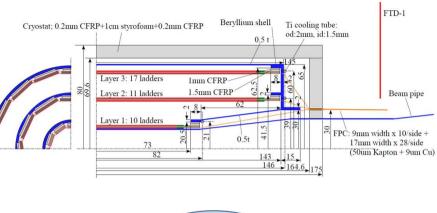

50 μm thin CMOS sensor

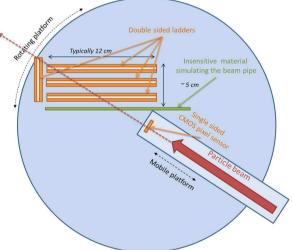
PLUME ladder


bending thin CMOS sensors

supportless Vx Det.

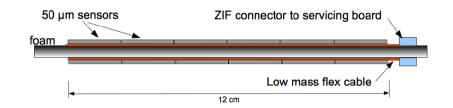
Exhaustive/Ambitious Overview

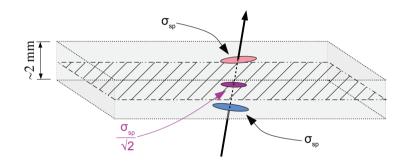

- Technological goal:
 - o achieve new standards in charged particle detection (granularity & material budget), exploiting:
 - exploit thinned CMOS Pixel Sensors (CPS) and their industrial progress (feature size, stitching)
 - exploit new materials and their industrial progress
 - investigate potential asset of wireless short range signal transmission
 - two concepts addressed:
 - ultra-light double-sided detector modules for 1) large surface tracking devices and 2) vertex detectors
 - nearly unsupported large cylindrical detector modules for 1) vertexing and 2) tracking devices
- Ultra-light double-sided detector modules for large area trackers:
 - start from PLUME double-sided ladder concept
 - investigate reduction of material budget
 - investigate power pulsing procedure
 - o investigate (if relevant) wireless communication between detector layer faces
 - o overlap with CBM-MVD chip devt (MIMOSIS/CREMAPS), CREMLIN+, AIDAinova
- Cylindrical, nearly unsupported, detector modules for vertex detectors:
 - exploit large area CPS manufactured with stitching techniques
 - investigate suppression of material due to flex cable and mechanical support
 - partnership with ALICE-ITS3 (and CERN R&D WP-1.2) & CREMLIN+

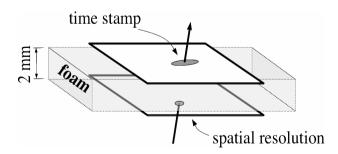


Use of "PLUMOSIS" Ladders: The Tricky Corner of the Vertex Detector

- General idea: (derived from ILD experimental concept)
- Reproduce approx. a small azimuthal sector of the vertex detector in polar angle sector ($\sim 30^{\circ}$ to 10°) in front of FW trackers (see fig.) with 2 ladder pairs for barrel and 1 pair for end-cap (+ telescope)
- Install whole system on rotating table at DESY test beam (the rotation wrt beam line simulates the track polar angle)
- Study track reconstruction (& hit clusters $\Rightarrow \sigma_{sp}$) versus polar angle while varying the geometry (e.g. distance between detection planes)
- Compare beam test results to M.C. simulations
- Recalibrate anticipated/simulated track reconstruction performances of ILD with beam test results
- Outcome of study: optimal vertex detector geometry and improved realism of ILD software
- Components:
 - 2 or 4 PLUME like ladders based on MIMOSIS standing for barrel of Vertex Detector
 - o at least 2 ladders standing for a Vertex Detector end-cap
 - telescope based on MIMOSIS (alias CREMAPS) CPS, standing for tracking outside of Vertex Detector
 - all ladders mounted in a way allowing for rotations & translations wrt beam line (inside horizontal plane containing beam)

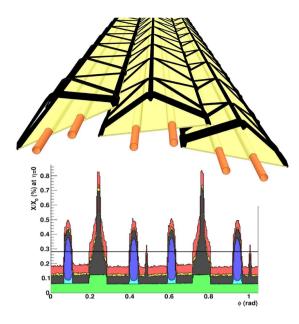


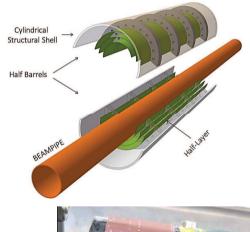


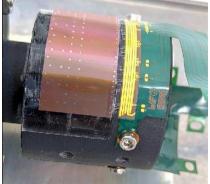

Ultra-Light Double-Sided Pixelated Tracker Modules

• General remarks:

- Double-sided ladders for
 - \cdot excellent spatial resolution (granularity \rightarrow face-to-face correlation)
 - \cdot coping with very high hit densities (speed \rightarrowtail face-to-face correlation
- Caveate: material budget oughts to be suppressed enough
- $\,\circ\,$ PLUME $\equiv\,$ Existing prototype, based on MIMOSA-26: 8 million pixels, \gtrsim 3 μm , 115 μs , 0.4 % X_0
- $_\circ~$ 1st goal: improve r.o. speed to O(1) μs & squeeze mat. budget to \lesssim 0.3 % X_0, validate face-to-face sensor correlation
- 2ry goal: investigate wireless face-to-face signal transmission
- Possibly: investigate power pulsing in mag. field ? (tbc)
- Sensor related objectives:
 - $_{\rm O}$ Baseline MIMOSIS-2 proto.: \sim 5 $\mu m,$ \lesssim 5 $\mu s,$ \lesssim 50 mW/cm^2, \gtrsim 50 MHz/cm^2
 - Assess spatial resolution of ladder based on face-to-face correlations
 - Ideally: develop mixed MONOPIX/MALTA-MIMOSIS ladders (complicated !)
- System related objectives:
 - revisit structure of PLUME to compress its material budget
 - investigate new materials & micro-channel cooling possibilities



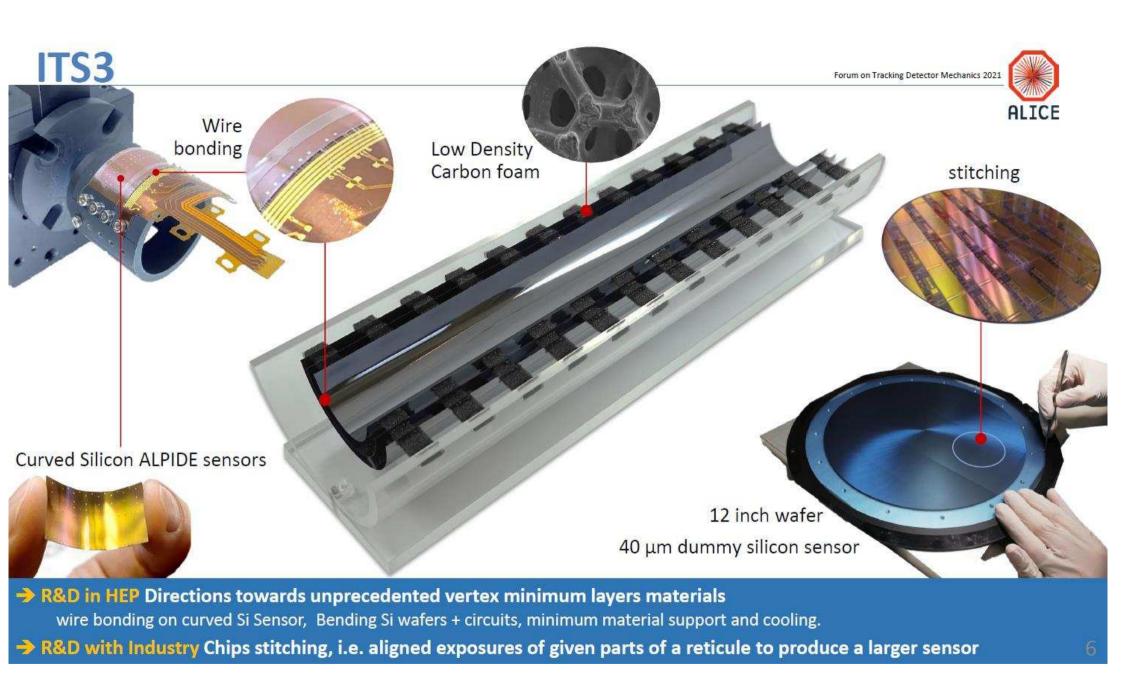




Ultra-Thin and Curved Pixelated Detector Modules

- General idea:
 - Suppress mat. budget due to overlaps between neighbouring staves
 - Revisit concept of ladder based on multi-reticle (stitched) CPS
 - Vertex detector innermost layer: use beam pipe as support
- Mechanical issues:
 - investigate concept of cylindrical bending of large sensors
 - investigate use of beam pipe as mechanical support
 - study mechanical support for large bent thinned CPS
- CPS issues:
 - realise stitched sensors: 65 nm or 180 nm CMOS process
 - investigate 65 nm imaging process detection capability
 - validate 65 nm process and assess its added value wrt 180 nm process
- Framework:
 - Partnership with ALICE-ITS3 & CERN-EP WP1.2
 - Adaptation to other experimental set-ups (e.g. searching DM particles)

Context and Partners


- Existing framework underlying the proposed project:
 - ILC related detector R&D addressing vertex and tracking detectors
 - Upstream R&D of CMOS pixel sensors (CPS) at IPHC-Strasbourg
 - Development of the CPS MIMOSIS for the CBM-MVD at FAIR/GSI
 - CREMLINplus E.U. project (2020 2024): WP-7 addressing future tracking detectors in IPHC-GSI partnership
 - ALICE-ITS3 upgrade project and CERN based R&D on future CPS, involving IPHC and DESY
 - AIDAinova E.U. project: WP-3 on beam telescopes with DESY and IPHC
 - former PLUME collaboration (IPHC-Strasbourg DESY Bristol Univ.)
- Partners:
 - GSI for MIMOSIS/CBM and CREMLINplus
 - DESY for PLUME, CREMLINplus, AIDAinova, ALICE-ITS3 and ILC related R&D
 - IPHC-Strasbourg for all topics above
 - IJCLab: ILC related detector R&D and CREMLINplus, AIDAinova

SUMMARY

- Objectives of partnership :
 - o develop future high performance tracking systems improving DM particle search capability
 - work on concept of double-sided ladders equipped with thin CMOS sensors
 - work on concept of "supportless detector module" based on curved multi-reticle CMOS sensors
- Complementarity of Partners : considering past and on-going connected activities
 - Development of CMOS sensors:
 design: IPHC, DESY tests: IPHC, GSI, DESY, IJClab
 - Development of double-sided detector modules:
 system integ.: GSI, DESY, IJCLab (tbc) tests: IPHC, GSI, DESY, IJClab
 - Development of supportless detector modules:

design: DESY, IJClab (tbc) syst. integ.: IPHC, DESY, IJClab (tbc), GSI tests: IPHC, DESY, IJClab

- Status: project still emerging
 - Deliverables and work plan still to be defined
 - Definition of contributions from each partner still in progress
 - Resources needed to achieve deliverables still incomplete

