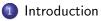
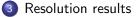
The R2D2 project An SPC R&D for the neutrinoless double beta decay search

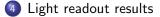
V. Cecchini

Université de Bordeaux, CENBG, CNRS/IN2P3

Subatech, IMT-Atlantique, Université de Nantes.


université *BORDEAUX




GdR DUPhy / IRN ν - 1/12/2021

Overview

2 Experimental setup

Motivations

- NEWS-G (dark matter experiment with SPC¹) show promising results in low energy measurements like a **single electron detection** ability.
- A preliminary simulation² shows that an extremely low background SPC could reach a competitive sensitivity for $\beta\beta0\nu$ decay searches, with following requirements:
 - Excellent energy resolution;
 - 2 Extremely low radioactive background;
 - **(3)** High masses of $\beta\beta$ emitter medium.
 - 2-tracks recognition \Rightarrow important asset.
- **R2D2** Rare Decays with Radial Detector: R&D project to evaluate the feasibility of a ton scale detector with **ultimate low background**.

¹Spherical Proportional Counter, *i.e.* spherical high-pressure gaseous TPC ²JINST 13 (2018) no.01, P01009

R2D2 Roadmap

Prototype 1 Goal: Demonstrate the **energy resolution** capabilities: expect 1% FWHM at 2.46 MeV, the ¹³⁶Xe $Q_{\beta\beta}$. \rightarrow **No radio-purity**, first phase with **Argon**, target of 10 kg Xenon (40 bars).

- * Electronic design
- * Light readout
- * Sensor improvements

Prototype 2 Demonstrate the almost zero background \rightarrow 50kg Xe; Radio-pure SPC; First measurements (limits $m_{\beta\beta}$ <160-330 meV)

Experiment Cover the Inverse Hierarchy ($m_{\beta\beta} < 10 \text{ meV}$) with 1 m radius SPC: 1 ton Xenon, in a background free experiment.

R2D2 Roadmap

Prototype 1 Goal: Demonstrate the **energy resolution** capabilities: expect 1% FWHM at 2.46 MeV, the ¹³⁶Xe $Q_{\beta\beta}$. \rightarrow **No radio-purity**, first phase with **Argon**, target of 10 kg Xenon (40 bars).

- * Electronic design
- * Light readout
- * Sensor improvements

Prototype 2 Demonstrate the almost zero background \rightarrow 50kg Xe; Radio-pure SPC; First measurements (limits $m_{\beta\beta}$ <160-330 meV)

Experiment Cover the Inverse Hierarchy ($m_{\beta\beta} < 10 \text{ meV}$) with 1 m radius SPC: 1 ton Xenon, in a background free experiment.

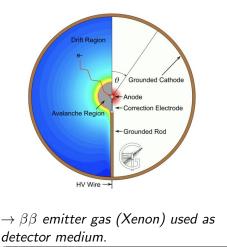
R2D2 Roadmap

Prototype 1 Goal: Demonstrate the **energy resolution** capabilities: expect 1% FWHM at 2.46 MeV, the ¹³⁶Xe $Q_{\beta\beta}$. \rightarrow **No radio-purity**, first phase with **Argon**, target of 10 kg Xenon (40 bars).

- * Electronic design
- * Light readout
- * Sensor improvements

Prototype 2 Demonstrate the almost zero background \rightarrow 50kg Xe; Radio-pure SPC; First measurements (limits $m_{\beta\beta}$ <160-330 meV)

Experiment Cover the Inverse Hierarchy ($m_{\beta\beta} < 10 \text{ meV}$) with 1 m radius SPC: 1 ton Xenon, in a background free experiment.

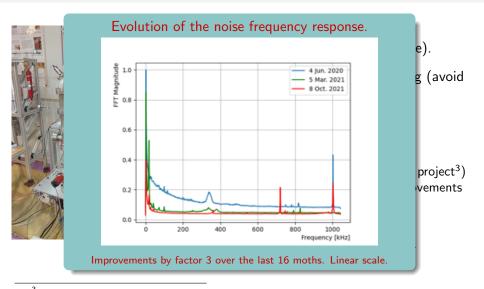

Detector's principles

Main advantages

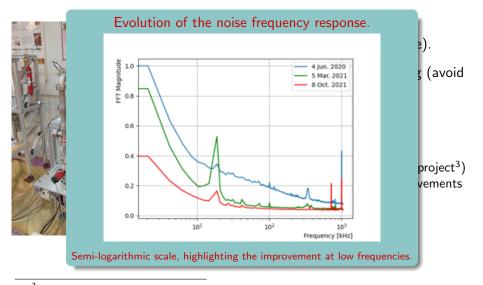
- Simplicity of readout: one channel + light readout.
- − Simplicity of structure
 ⇒ Low material budget
 ⇒ Low background.
- Low detection threshold (single electron).
- Two tracks recognition (gas properties).

Design

Spherical Proportional Counter



- Prototype built in aluminum (no radio-purity required at this stage).
- Stringent requirements on sealing (avoid external contamination).
- Noise improvement:
 - Vibration reduction
 - Controlled room temperature
 - Low noise electronics (OWEN project³)
 - Grounding and shielding improvements
- Additional light readout.
- New: High pressure certification.

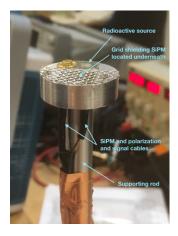

³https://r2d2.in2p3.fr/owen.html

V. Cecchini

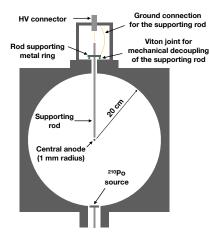
The R2D2 project

3 https://r2d2.in2p3.fr/owen.html

3 https://r2d2.in2p3.fr/owen.html

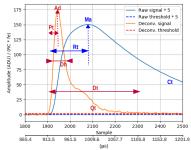

- Prototype built in aluminum (no radio-purity required at this stage).
- Stringent requirements on sealing (avoid external contamination).
- Noise improvement:
 - Vibration reduction
 - Controlled room temperature
 - Low noise electronics (OWEN project³)
 - Grounding and shielding improvements
- Additional light readout.
- New: High pressure certification.

³https://r2d2.in2p3.fr/owen.html


Light readout challenges

Use 6 \times 6 mm^2 SiPM with a photon detection efficiency (PDE) of 14% at 128 nm

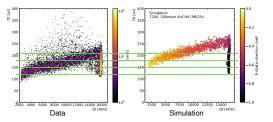
- ⇒ Operation at room temperature require **temperature correction** of the SiPM response
- \rightarrow Shielding the SiPM electric field is needed to not disturb the SPC one.


Detector Operation Condition

- Argon P2 (98% Ar, 2%CH₄) used in the early stage ;
 Pure argon used for drift-time measurements.
- ²¹⁰*Po* source of 5.3 MeV α : study gas behaviours, signal shape.
- Different pressures tested (various track length) from 200 to 1100 mbars.

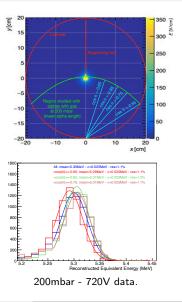
SPC waveform analyses

For very high precision measurements, we compute **variables from integrator and deconvoluted** signals.

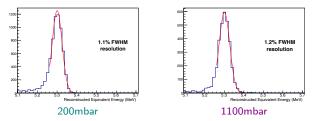


The shape of the deconvoluted signal contain the event history.

- $\bullet\,$ Charge observables (linked to energy): Qt compares to Ct \to accuracy of deconvolution
- Temporal observables linked to anode distance and track length: Dt (signal width neglecting ion tail) and Dh $\rightarrow \alpha$ angular direction
- Pt: direction of the track (toward anode \Rightarrow small Pt)


1st Resolution main result - Direction effects

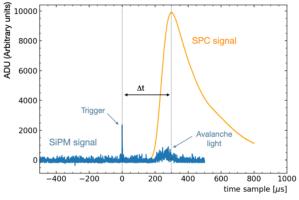
Cuts for angle selection from simulation.


Dt cuts corresponding to angular direction selection.

⇒ Track direction doesn't affect energy resolution.

2nd Resolution main result - Track length effects

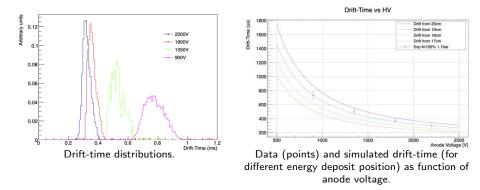
To vary the track length, runs was taken at 200 mbar (720V) and 1100 mbar (2000V), *i.e.* 15 to 20 cm and \sim 4 cm respectively.



Histograms of Ct variable (charge) convert in recovered energy.

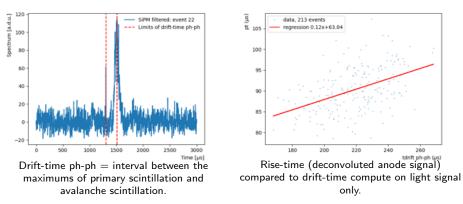
 \Rightarrow Track length and pressure do not affect (strongly) the energy resolution

Preliminary results on light readout


- SiPM use for light collection, giving the t_0 of the event.
- Suitable operation conditions are achieved with Argon at 1100 mbar (primary ionisation is contained near the SiPM).

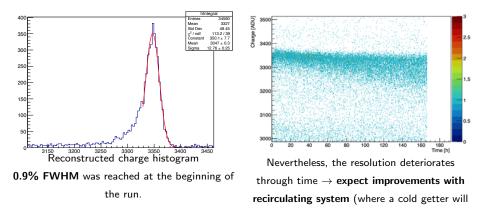
2200V event: SiPM signal in blue, SPC (ball sensor) in orange

Drift-time measurements


Measure the drift-time at various anode voltages and compare it to simulation:

 \rightarrow Good agreement between data and simulation.

Offline light signal analysis

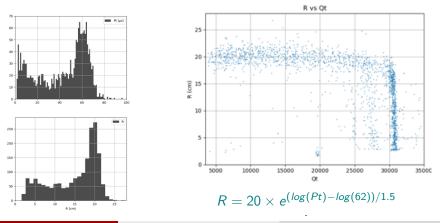

Attempt to correlate anode signal observable to the drift-time

Require further studies but already encouraging knowing tracks are short (3 cm @ 1.1 bar).

Latest results

ArgonP2 at 200mbar, 800V in cleaner noise conditions:

take place).


Position reconstruction

To **reconstruct radial position**, NEWS-G obtained an empirical dependence: $Pt = Pt_{max} \times (R/R_C)^{\alpha}$:

 α an empirical fit factor

R the radius, R_C the Cathode radius (=20 cm)

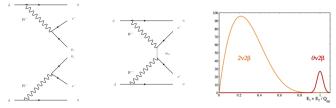
Pt the rise-time of deconvolved signal (Pt_{max} = 62 μ s).

Conclusions

- A good understanding of the detector response was achieved.
- 1.1% energy resolution have been reached in Argon with 5.3MeV α .
- Neither track length nor direction affect the energy resolution.
- Deal with light readout: successful drift-time measurements.

Plenty of work:

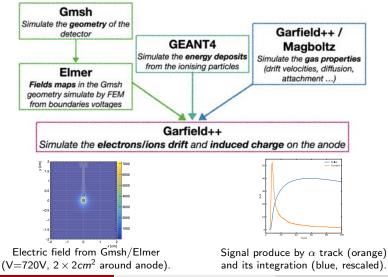
- $\rightarrow\,$ Correlation of the light readout information to the SPC observables could improve event reconstruction.
- $\rightarrow\,$ Results have to be confirmed in Xenon and at higher pressure.
- \Rightarrow Expect to build prototype with features adapted to physics measurements (depending on results).



BACKUP

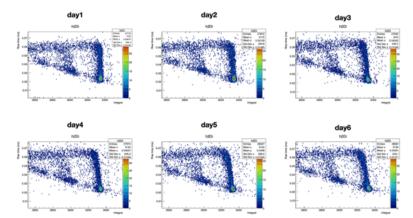
Backup

$\beta\beta$ 0 ν decay


- BSM process with lepton number violation (LNV): forbidden in SM
- Sensitive way to determine if the neutrino is Majorana particle.

- $(T^{0\nu}_{1/2})^{-1} = G^{0\nu} |M^{0\nu}|^2 (\frac{m_{\beta\beta}}{m_e})^2$: $\beta\beta 0\nu$ evidences requires, at least
 - Excellent energy resolution;
 - 2 Extremely low radioactive background;
 - 3 High masses of $\beta\beta$ emitter medium.
 - 2-tracks recognition = important asset.

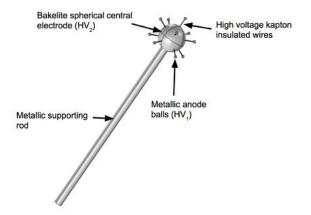
Simulation Framework


It aims to improve our variables understanding from waveform analysis.

Backup

Gas evolution

Due to attachment, we expect a more inclined shape of Rt vs Qt.


Outgassing may increase attachment, and indeed we observe a steeper slope.

V. Cecchini

The R2D2 project

Backup

ACHINOS

Multi-anode sensor "ACHINOS" design

V. Cecchini

The R2D2 project

GdR DUPhy / IRN ν - 1/12/2021 23