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response in the keV regime
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DarkSide-50 experiment

S1 Yields: 
• S1 Yield ~7.9 pe/keV at null field 
• S1 Yield ~7.0 pe/keV at 200 V/cm at 41 keVe

• Ionization Work Function ~ 23.4 eV

Electron lifetime > 10 ms
Maximum drift time: 376 ms at 200 V/cm
Drift velocity: 0.93 mm /ms

Position reconstruction:
• Resolution in Z ~1 mm
• Resolution in XY  <1 cm

39Ar depletion factor in UAr ~1400 (~0.7 mBq/kg)

Full characterization of the detector response with 
Monte Carlo (JINST 12 (2017) P10015)

38 PMTs

• 50 kg dual-phase Liquid Argon TPC
• Using Underground Argon: depleted in 39Ar
• In a 30 ton borated liquid scintillator neutron veto
• In a 1000 ton Water Cherenkov Veto
• Underground in Gran Sasso National Lab, Italy
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DarkSide-50 experiment

DarkSide-50
- S1 light collection efficiency: 0.16±0.01 → low efficiency
- S2 yield: 23±1 pe/e-                                 → amplification

keV regime accessible using s2 only 

s1

s2

 
e- 
drift

χ

LAr

GAr

Dual-phase LAr TPC

Argon scintillation and ionisation mechanisms

Right figure: http://darkmatter.ethz.ch/

10.1103/PhysRevLett.121.081307
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Motivation
Lower detection threshold, higher sensitivity to light dark matter candidates:
  - Wimp-nucleon interaction with/without Migdal effect
  - Wimp-electron interaction
  - Sterile neutrinos
  - Axion-like particles

 

Liquid argon detectors: 
  - Massive
  - Radiopure
  - High scintillation yield 
  - High ionization yield 
  - Low electron mobility
  - Argon mass << Xenon mass
  - Higher recoil energy (transferred 
momentum) wrt Xe at low energy 

Noble liquid detectors:
  - Efficient background discrimination
  - Massive target
  - High scintillation yield

DOI: 10.1103/PhysRevLett.123.251801

2018

DOI:10.1103/PhysRevLett.121.081307
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Response model
Energy spectra

Single scatter event 
(E, x, y, z, ER/NR)

ER: conversion 
energy to ne

NR: conversion 
energy to ne

Fano factor
Ionization/Quenching 

fluctuation

Electron lifetime vs z

Radial efficiency

Single electron response

Final spectrum

Data reconstruction

3. NR ionization yield
AmBe
AmC
External datasets:
- SCENE
- ARIS
- Joshi et al.

2. ER ionization yield
37Ar lines

39Ar

1. Detector response model
Monte-Carlo fit
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Instrumental effects 
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s1

Electron lifetime

Radial distortion 
Resolution dominated by:
  - Electroluminescence 
fluctuations 
  - PMT charge response

- Capture from impurities along the 
drift
- Measured > 10 ms 
- Maximal distortion of a few 
percent wrt the maximal tdrift

. .

. .

Monte-Carlo modelling of the detector response in S2

GAr

LAr

s2

Electric
field
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Radial distortion and correction

radius
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Low S2 pulse: XY reconstruction inefficient

XY estimator: top PMT position with max light fraction

Distortion induced by either
→  non uniformity of the TPB thickness on the top fused silica window
→  sagging of the window causing a variation in the GP thickness

inefficiency

discretization

Extracted from 
83mKr

DOI:10.1088/1748-0221/12/10/P10015
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37Ar K and L electron capture

Fit performed with a chi2 analysis
→ Free parameters: number of extracted electrons (both lines 37Ar + Fano factor)

Non-uniform 
radial response 
of the detector

Fit chi2 = 82.4 / 64

L1/K shells ratio: 
→ measured  = 0.10±0.01
→ expected = 0.103±0.01

DOI: 10.1103/PhysRev.120.2196

0.102±0.01
DOI: 10.1080/14786436208212179

0.098±0.003
DOI: 10.1007/BF01333365

Fitted Fano factor:
→ measured = 0.10±0.03
→ expected = 0.107 (Schockley)

                        0.116 (Alkhazov) 

L1 shell
Ne = 12.0±0.1±0.5

K shell
Ne = 

48.2±0.2±2.1

Sample selection

→ Subtraction between the first ~ 100 days from the latest ~500 days of the UAr campaign  
→ 37Ar almost entirely decayed in the last ~ 500 days
→ Samples normalized by their lifetime

DOI: 10.1016/0029-554X(76)90292-5
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37Ar decay

Single electron capture transition ground state to ground state (half life of 35.01 days)

Evaluation of emitted cascades of electrons, X-rays and UV photons with RELAX software (EADL2017 library 
of atomic transition data)

- Atomic relaxation spectra of UV photons, X rays, Auger electrons (primaries)
- Primaries from bound state to bound state transitions for a single initial vacancy in the different sub-shells
- Deterministic propagation of the vacancies up to the valence shell and to the neutralization 
- Consideration of atomic configurations

- 1

Fit: 12.0±0.1(stat.)±0.5(syst.)

neglected
 - (2±1) 
 - 1 
 0

Ionization electrons at 179eV:    8.2±1.3

using BetaShape code 
https://doi.org/10.1016/j.apradiso.2019.108884

Lack of model: 
complex event 
topology
→ exclude K 
shell

[eV] [eV]
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39Ar
Additional points from rotated energy as:

→ AAr campaign

with w = 19.5±1.0 eV 
→ from doi.org/10.1143/JJAP.41.1538  

         g1 = 0.16±0.01
→ fit of spectral shapes of 133Ba and 57Co  [arXiv:1707.05630v3 ]

g2 = 23±1 pe/e- (in central PMTs)
→ from s2 echoes

39
A

r
ev

en
ts

2 cm

21
.6

 c
m

16.8 cm

7 cm

7 cm

 + Number of S2  ≤ 1

Event selection:

Fiducialisation of the volume
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Electron Recoil Ionization yield 

  γ = Cbox/F
with F the drift field 

Ionization yield per unit of ER energy following the custom model:  

→ Assumption of a constant excitation-to-ionization ratio

Fit result
  Cbox = 9.2±0.9 V/cm
  ρ = 54.4±7.3 keVer-1
  p0 = 0.11±0.003
  P1 = 0.71±0.08

Compatible with Thomas-Imel fit at 1σ 
up to 3keVer

Thomas-Imel model Custom model:
extension above 3keVer
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Nuclear Recoil Ionization Yield 
Ionization yield using Thomas-Imel

Numbers of ion as a function of electronic 
and nuclear stopping power

Reduced energy

Electronic stopping power

Nuclear stopping power based on Universal 
Screening Function 

Test of two extreme models for intrinsic resolution 
    1/ Binomial fluctuations in energy quenching 
    2/ No fluctuations in energy quenching

Negligible difference: use of 2/

Recombination using Thomas-Imel   with γ = Cbox/F 

Free parameters of 
the model

Other functions tested
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Nuclear Recoil Ionization Yield 

AmC dataset: 19.97 days
4 central PMTs: 30, 31, 24, 25
UAr normalized by the lifetime

Am γ contamination reduced 
(5.2% - MC simulation)

241Am-13C (AmC)
- Neutron source via (α, n) on 13C
- Almost monochromatic
- No γ coincidence
- High rate of low energy γ from AmC

241Am activity ~ 3.6 Mbq
→ pile-up X-rays
→ γ’s able to s able to contaminate the active volume 

- γ’s able to s at 59.5keV, BR=35.9 : absorbed in the LAr buffer
- γ’s able to s > 99keV, BR=10-9 : MC simulation
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Nuclear Recoil Ionization Yield 

Excess of events 
attributed to neutron 

scatterings.

→ Spectrum of uncorrelated events from G4DS MC simulations
→ Uncorrelated events are subtracted to the data
→ Not dependant on s1 efficiency
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Nuclear Recoil Ionization Yield 
241Am-9Be (AmBe)
→Neutron and γ source
→ Taggable source
→ Non monochromatic
→NR events selected by triple coincidence in the TPC
→ Coincidence with s1: inefficient when s1 not detected

AmBe

Prompt
γ 4.4 MeV 

Capture
α 1.47 MeV
γ 4.4 MeV 

 Liquid scintillation veto

prompt

delayed

PMT 
afterpulses

(Detectors difference trigger offset: -550 ns)

NR
.

TPC
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Nuclear Recoil Ionization Yield 

→Electron recoil background assessed 
using a control region where no NR events 
are expected

→UAr spectra normalized and retrieve 
from the AmBe one

S1 detection efficiency:
- Ratio of ER contamination subtracted to AmC 
samples for S2only and for S1+S2 
- Error function fit

S1 detection 
efficiency impact
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Nuclear Recoil Ionization Yield 
External datasets
 
* SCENE 

- 4 ionization yields between 16.9 and 57.3keV, 
- Drift field:  g2=3.1±0.3pe/e-
- Results normalized to DarkSide-50 response by the g2 ratio

* ARIS
- 8 scintillation response between 7.1 and 117.8 keVnr
- Same drift field than DarkSide-50 
- Results normalized to DarkSide-50 by the ratio between field-off S1 yields
- S2 by the NR S2/S1 ratio within the AmBe dataset (MC simulations)

* Joshi et al. 
- Ionization yield at 6.7keV
- Correction from the initial publication
- Compared to the final result only 
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Nuclear Recoil Ionization Yield 
Simultaneous fit of DS-50 AmC , DS-50 AmBe, ARIS, SCENE

1σ uncertainty bands
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Nuclear Recoil Ionization Yield 

Combined fit 

 

Best parameters:
Cbox = 8.1+0.1-0.2 V/cm
Β = 6.8+0.1-0.3 10^3

→Lowest NR threshold in LAr:  3 electrons
→ Errors from statistical uncertainties and systematics of g2
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Dependence on the screening function

Different nuclear stopping power models

with 

Ziegler et al. yields the lowest ionization 
yield in the WIMP’s able to s interest region
→ most conservative result
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Se suppression
Impact of low energy se suppression (from arXiv:1011.3990)

→ Suppression not compatible with the LXe (arXiv:1011.3990) and  AmC dataset (z>0.04 excluded at 2σ)

with

and z= 0.25: hypothesis of Coulomb effects inside se

Uncertainty bands
Dark area: 1σ 
Light area: 2σ 

Tested by 
Bezrukov
Rejected by 
Xenon data 

AmC 
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Conclusion

- IN2P3 leadership in low mass WIMP search

- Validation of the detector response

- Characterisation of the ER LAr ionization response calibration down to 180eVer, extrapolated down to few 
tens of eV

- Characterisation of the NR LAr ionization response calibration down to ~500eVnr (model dependant)

- Improvement of the DarkSide-50 low-mass sensitivity 

- Bases for further liquid argon experiments 

- Exploit this calibration expertize for DS20k and further extend it with hardware contributions (see Pascal 
talk on Monday) 

- Further improvement thanks to measurement with neutron beams

Published paper:
10.1103/

PhysRevD.104.082005
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Thank you for your attention!
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