

De-excitation after neutron captures : application of the FIFRELIN code to neutrinos and bolometers

Gabrielle Soum CEA Saclay

GDR Deep underground physics plenary meeting – 30 Nov 2021

Introduction

neutron background : cosmic-ray produced neutron Fast neutrons leading to nuclear recoils through elastic scattering Here : neutrons at the end of their track, thermalized

Contents

1. FIFRELIN

2. Application to neutrino detection : STEREO

3. Application to bolometer calibration : CRAB

FIFRELIN

FIFRELIN : FIssion FRagment Evaporation Leading to an Investigation of Nuclear data.

O. Litaize et al., Eur. Phys. J. A (2015) 51: 177

D. Regnier et al., Computer Physics Communications 201(2016)19–28

Eur. Phys. J. A (2015) **51**: 177 DOI 10.1140/epja/i2015-15177-9

Regular Article – Theoretical Physics

Computer Physics Communications 201 (2016) 19-28

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Fission modelling with FIFRELIN*

Olivier Litaize^a, Olivier Serot, and Léonie Berge CEA, DEN, DER, SPRC, F-13108 Saint Paul Lez Durance, France An improved numerical method to compute neutron/gamma deexcitation cascades starting from a high spin state

D. Regnier^{a,b}, O. Litaize^{a,*}, O. Serot^a

^a CEA, DEN, DER, SPRC, Cadarache, F-13108 Saint Paul lez Durance, France
^b Nuclear and Chemical Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

- Developpers : O. Litaize, O. Serot, A. Chebboubi
- All FIFRELIN results presented in this talk are courtesy of A. Chalil, L. Thulliez, T. Materna

FIFRELIN : level scheme

E	
-	Neutron separation energy level
-	Ground state
E	nergy levels from RIPL3

Energy levels from EGAF

- Information on levels :
 - Energy E
 - Spin J
 - Parity π
 - Level to level transition probabilities
- FIFREFLIN incorporates evaluated nuclear data
 - Low-lying states : RIPL-3
 - Levels accessible from S_n: EGAF

RIPL-3 : Reference Input Parameter Libray Nucl. Data Sheets 110 (2009) 3107 Database updated in September 2020

EGAF : The Evaluated Gamma-Ray Activation File Nucl. Data Sheets 119 (2014) 79

FIFRELIN : level scheme

Energy levels from RIPL3 Energy levels from EGAF Theoretical levels from models

- Some evaluated levels are not completely known : models are used to complete missing information
- Some discreet energy levels + the continuum are missing from evaluated data
- FIFRELIN completes the evaluated level scheme with theoretical level density models

FIFRELIN : γ -cascades

- Following neutron capture, compound nucleus is in a state close to S_n
- Then de-excitates towards ground state emitting γ
- FIFRELIN generates γ cascades with a Monte Carlo process from S_n to G.S.

FIFRELIN : example for ¹⁸³W

Output for each cascade :

- Number of **γ**
- Number of conversion e⁻
- Energies
- Isotropic momenta
- Timing (RIPL3 or Weisskopf estimate)

Improvement of FIFRELIN results

Courtesy of A. Chalil

Comparison with experimental results for the γ de-excitation of ¹⁵⁶Gd

Contents

1. FIFRELIN

2. Application to neutrino detection : STEREO

3. Application to bolometer calibration : CRAB

https://www.stereo-experiment.org/scientific.php?

Neutrino detection : STEREO

STEREO = Search for Sterile Reactor Neutrino Oscillations

- near ILL research reactor
- 6 cells filled with Gd-loaded liquid scintillator (0.2wt% Gd)

STEREO collaboration, Phys .Rev. D 102 (2020) 5, 052002 STEREO collaboration , Phys. Rev. Lett. 125 (2020) 20, 201801 PROSPECT and STEREO collaborations, 2021, arXiv:2107.03371 [nucl-ex]

Inverse Beta decay :

 $\overline{v}_{e} + p \rightarrow e^{+} + n$

Used for neutrino detection :

- e⁺ detected via scintillation and annihilation
- n detected via capture on Gd after thermalization

n+ ^{155,157}Gd → ^{156,158}Gd + γ $\sigma_{(n,\gamma)}$ (¹⁵⁵Gd)=60 000b $\sigma_{(n,\gamma)}$ (¹⁵⁷Gd)=250 000b

 delayed coincidence between these signals is used to reject background

STEREO + FIFRELIN

٠

- Detector response depends on the de-excitation of ^{156,158}Gd (neutron signal)
- Using FIFRELIN de-excitation schemes helped the Monte-Carlo simulation better fit the experimental data

FIFRELIN data (red) on ¹⁵⁶Gd de-excitation compared to Geant4 simulation (blue)

H. Almazán et al., Zenodo, 2653786 (2019)

AmBe source placed at the **center of the cell** Reconstructed energy spectra from neutron captures

STEREO+FIFRELIN

AmBe source placed at the **top of a side cell** Reconstructed energy spectra from neutron captures Eur. Phys. J. A (2019) 55: 183

- AmBe source at the top of a side cell = more γ escape the cell without depositing all their energy
- Response of the detector more sensitive to the Gd $\gamma\text{-}cascade$ details
- Simulations with FIFRELIN better fit the data, especially after database updates

Courtesy of A. Chalil

Contents

1. FIFRELIN

2. Application to neutrino detection : STEREO

3. Application to bolometer calibration : CRAB

CRAB : Bolometer calibration method

Maximum nuclear recoil energy for different processes (target = W) 10³ 10² E Max Recoil (eV) 10⁻¹ 3 5 E_v (MeV) CEvNS Luu 5 6 7 8 9 10 Dark matter $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 & 4 \\ M_{NL} & (GeV) \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 7 \end{bmatrix}$ $\begin{bmatrix} 3 & 4 \\ 0 & 7$ Neutron elastic 0 1 2 3 4 5 6 7 8 9 10 T_n(keV)

Excitation

L. Thulliez, D. Lhuillier et al 2021 JINST 16 P07032

CaWO₄ bolometer

- Multi-γ transitions dominate the recoil spectrum below 100eV
- CRAB needs precise description of the γcascades
- Third calibration peak hidden in the multi-γ background

Recoil energy spectrum simulation GEANT4+FIFRELIN 5 × 5 × 5 mm3 CaWO4 bolometer Resolution : σ = 5eV

Measures in coincidence

- Measure in coincidence the emitted **γ** and the corresponding nuclear recoil in the bolometer
- Allows to get a third calibration peak @85eV
- Use the two γ detectors for triple coincidence γ-γ-recoil : access to multi-γ transitions (calibration @lower energy)

FIFRELIN developments : angular correlations

- Direction of emission is isotropic for the first $\boldsymbol{\gamma}$
- But directions are correlated for the following $\boldsymbol{\gamma}$
- It has been recently implemented in FIFRELIN

FIFRELIN developments : timing

For CRAB, two timing to be compared :

- Emission of the γs : τ_{γ} (FIFRELIN)
- Recoil in the crystal lattice : τ_{recoil}

FIFRELIN developments : timing

- Timing changes the energy deposited in the bolometer, but calibration peaks do not move
- Ongoing studies on both timings
 - τ_v : FIFRELIN with models taking collective effects into account (rotational bands)
 - τ_{recoil}: Binary Collision Approximation simulations with code IRADINA (C. Borschel, C. Ronning/Nucl. Instrum. Methods B 269 (2011) 2133)

Conclusion

- FIFRELIN uses both experimental and theoretical data to precisely predict de-excitation of nuclei after thermal neutron capture
 - Effort to incorporate more evaluated databases (updated RIPL3, EGAF, ...)
 - Angular correlations
 - Timing of cascades
- A useful tool for the community : a lot of possible applications
 - neutrino detection
 - Bolometers
 - ...
- Not open source (code CEA), but possible to get cascade samples

(already avalaible online for Gd : <u>https://zenodo.org/record/3384633#.YaSr8rvjKAk</u>)