Towards reliable nuclear matrix elements for neutrinoless $\beta \beta$ decay

Frédéric Nowacki

GDR Deep Underground Physics plenary meeting LPNHE Paris, November $30^{\text {th }} 2021$

Neutrinos, dark matter studied in experiments using nuclei

Nuclear matrix elements depend on nuclear structure crucial to anticipate reach and fully exploit experiments
$0 \nu \beta \beta$ decay: $\quad\left[T_{1 / 2}^{0 \nu}\right]^{-1} \propto\left|M^{0 \nu}\right|^{2}\left\langle m_{\nu}\right\rangle^{2}$
Dark matter: $\quad \frac{d \sigma_{\chi} \mathcal{N}}{d q^{2}} \propto\left|\sum_{i} c_{i} \zeta_{i} \mathcal{F}_{i}\right|^{2}$
$M^{0 \nu}$: Nuclear matrix element \mathcal{F}_{i} : Nuclear structure factor

Neutrinoless $\beta \beta$ decay

Lepton-number violation, Majorana nature of neutrinos Second order process only observable in rare cases with β-decay energetically forbidden or hindered by ΔJ

Present best limits $T_{1 / 2}^{0 \nu} \gtrsim 10^{25} \mathrm{y}$.:
${ }^{76} \mathrm{Ge}$ (GERDA, Majorana), ${ }^{130} \mathrm{Te}$ (CUORE), ${ }^{136} \mathrm{Xe}$ (EXO, KamLAND-Zen)

Next generation experiments: inverted hierarchy

The decay lifetime is $\left[T_{1 / 2}^{0 \nu}\left(0^{+} \rightarrow 0^{+}\right)\right]^{-1}=G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left\langle m_{\nu}^{\beta \beta}\right\rangle^{2}$
sensitive to absolute neutrino masses, $\left\langle m_{\nu}^{\beta \beta}\right\rangle=\sum_{i} U_{e i}^{2} m_{i}$

KamLAND-Zen, PRL117 082503 (2016)
Matrix elements needed to make sure next generation ton-scale experiments fully explore "inverted hierarchy"

$\beta \beta$ decay

Transition	$Q_{\beta \beta}(\mathrm{keV})$	Abundance $\left({ }^{232} \mathrm{Th}=100\right)$
		12
${ }^{110} \mathrm{Pd} \rightarrow{ }^{110} \mathrm{Cd}$	2013	8
${ }^{76} \mathrm{Ge} \rightarrow^{76} \mathrm{Se}$	2040	6
${ }^{124} \mathrm{Sn} \rightarrow{ }^{124} \mathrm{Te}$	2288	9
${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$	2479	34
${ }^{130} \mathrm{Te} \rightarrow{ }^{130} \mathrm{Xe}$	2533	7
${ }^{116} \mathrm{Cd} \rightarrow{ }^{116} \mathrm{Sn}$	2802	9
${ }^{82} \mathrm{Se} \rightarrow{ }^{82} \mathrm{Kr}$	2995	10
${ }^{100} \mathrm{Mo} \rightarrow{ }^{100} \mathrm{Ru}$	3034	3
${ }^{96} \mathrm{Zr} \rightarrow{ }^{96} \mathrm{Mo}$	3350	6
${ }^{150} \mathrm{Nd} \rightarrow{ }^{150} \mathrm{Sm}$	3667	0.2
${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$	4271	

$\beta \beta$ decay

Transition	$Q_{\beta \beta}(\mathrm{keV})$	Abundance $\left({ }^{232} \mathrm{Th}=100\right)$
		12
${ }^{110} \mathrm{Pd} \rightarrow{ }^{110} \mathrm{Cd}$	2013	8
${ }^{76} \mathrm{Ge} \rightarrow{ }^{76} \mathrm{Se}$	2040	6
${ }^{124} \mathrm{Sn} \rightarrow{ }^{124} \mathrm{Te}$	2288	9
${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$	2479	34
${ }^{130} \mathrm{Te} \rightarrow{ }^{130} \mathrm{Xe}$	2533	7
${ }^{116} \mathrm{Cd} \rightarrow{ }^{116} \mathrm{Sn}$	2802	9
${ }^{82} \mathrm{Se} \rightarrow{ }^{82} \mathrm{Kr}$	2995	10
${ }^{100} \mathrm{Mo} \rightarrow{ }^{100} \mathrm{Ru}$	3034	3
${ }^{96} \mathrm{Zr} \rightarrow{ }^{96} \mathrm{Mo}$	3350	6
${ }^{150} \mathrm{Nd} \rightarrow{ }^{150} \mathrm{Sm}$	3667	0.2
${ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}$	4271	

Specificity of $(\beta \beta)_{0_{\nu}}$:
NO EXPERIMENTAL DATA !!!
prediction for m_{ν} very difficult
easier for $m_{\nu}(\mathrm{A}) / m_{\nu}\left(\mathrm{A}^{\prime}\right)$

Specificity of $(\beta \beta)_{0_{\nu}}$:

NO EXPERIMENTAL DATA !!!

prediction for m_{ν} very difficult
easier for $m_{\nu}(\mathrm{A}) / m_{\nu}\left(\mathrm{A}^{\prime}\right)$

What is the best isotope to observe $(\beta \beta)_{0 \nu}$ decay ?

Specificicity of $(\beta \beta)_{0_{\nu}}$:

NO EXPERIMENTAL DATA !!!

prediction for m_{ν} very difficult
easier for $m_{\nu}(\mathrm{A}) / m_{\nu}\left(\mathrm{A}^{\prime}\right)$

What is the best isotope to observe $(\beta \beta)_{0 \nu}$ decay ?
What is the influence of the structure of the nucleus on $(\beta \beta)_{0 \nu}$ matrix elements ?

Calculating nulear matrix elements

Nuclear matrix elements needed to study fundamental symmetries
\langle Final $| \mathcal{L}_{\text {leptons-nucleus }} \mid$ Initial $\rangle=\langle$ Final $| d x j^{\mu}(x) J_{\mu}(x) \mid$ Initial \rangle

- Nuclear structure calculation of the initial and final states:
Shell model Retamosa, Caurier, FN...
Energy-density functional Rodriguez, Yao...
QRPA vogel, Faestler, Simkovic, Suhonen...
Interacting boson model lachello, Barea...
Ab Initio many-body methods
Green's Function MC, Coupled-Cluster, IM-SRG
- Lepton-nucleus interaction:

Study hadronic current in nucleus: phenomenological approaches, effec-
 tive theory of QCD

Nuclear many-body problem

The number of nucleons in nuclei is too large for an exact solution of A-body Schrödinger equation. Still, it is much too small for statistical methods

- Ab initio Methods
- Nuclear Shell Model (SM) / Configuration Interaction (Cl)
- Density Functional Theory (DFT)

- Define a valence space
- Derive an effective interaction

$$
\mathcal{H} \Psi=E \Psi \rightarrow \mathcal{H}_{\text {eff }} \Psi_{\text {eff }}=E \Psi_{\text {eff }}
$$

- Build and diagonalize the Hamiltonian matrix.
- A valence space can be adequate to describe some properties and completely wrong for others

${ }_{24}^{88} \mathrm{Cr}_{24}$	$\left(f_{\frac{7}{2}}^{2}\right)^{8}$	$\left(f_{\frac{7}{2}} p_{\frac{3}{2}}\right)^{8}$	$\left(f_{\frac{7}{2}} f_{5}\right)^{8}$	$(f p)^{8}$
$\left\langle n_{f 7 / 2}\right\rangle$	8	7.21	7.60	6.55
$\mathrm{E}\left(2^{+}\right)$	0.55	0.42	1.17	0.74
$\mathrm{Q}\left(2^{+}\right)$	0.0	-26	-0.03	-29.5
$\mathrm{BE} 2\left(2^{+} \rightarrow 0^{+}\right)$	77	150	82	215
$\mathrm{~B}(\mathrm{GT})$	0.80	0.96	4.54	4.25

- For the quadrupole properties $f_{\frac{7}{2}} p_{\frac{3}{2}}$ is a good space whereas for magnetic and Gamow-Teller processes the presence of the spin orbit partners is compulsory.
- Define a valence space
- Derive an effective interaction

$$
\mathcal{H} \Psi=E \Psi \rightarrow \mathcal{H}_{\mathrm{eff}} \Psi_{\mathrm{eff}}=E \Psi_{\text {eff }}
$$

- Build and diagonalize the Hamiltonian matrix.

In general, effective operators also have to be introduced to account for the restrictions of the Hilbert space

$$
\langle\Psi| \mathcal{O}|\Psi\rangle=\left\langle\Psi_{\text {eff }}\right| \mathcal{O}_{\text {eff }}\left|\Psi_{\text {eff }}\right\rangle
$$

In principle, all the spectroscopic properties are described simultaneously (Rotational band AND β decay half-life).

- A valence space can be adequate to describe some properties and completely wrong for others

${ }^{48} \mathrm{Cr}_{24}$	$\left(f_{\frac{7}{2}}\right)^{8}$	$\left(f_{\frac{7}{2}} p_{\frac{3}{2}}\right)^{8}$	$\left(f_{\frac{7}{2}} f_{5}\right)^{8}$	$(f p)^{8}$
$\left\langle n_{f 7 / 2}\right\rangle$	8	7.21	7.60	6.55
$\mathrm{E}\left(2^{+}\right)$	0.55	0.42	1.17	0.74
$\mathrm{Q}\left(2^{+}\right)$	0.0	-26	-0.03	-29.5
$\left.\mathrm{BE} 22^{+} \rightarrow 0^{+}\right)$	77	150	82	215
$\mathrm{~B}(\mathrm{GT})$	0.80	0.96	4.54	4.25

- For the quadrupole properties $f_{\frac{7}{2}} p_{\frac{3}{2}}$ is a good space whereas for magnetic and Gamow-Teller processes the presence of the spin orbit partners is compulsory.

The theoretical expression of the half-life of the 2ν mode can be written as:

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=G_{2 \nu}\left|M_{G T}^{2 \nu}\right|^{2}
$$

with

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

- $G_{2 \nu}$ contains the phase space factors and the axial coupling constant g_{A}

The theoretical expression of the half-life of the 2ν mode can be written as:

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=G_{2 \nu}\left|M_{G T}^{2 \nu}\right|^{2}
$$

with

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

- $G_{2 \nu}$ contains the phase space factors and the axial coupling constant g_{A}
- summation over intermediate states

The theoretical expression of the half-life of the 2ν mode can be written as:

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=G_{2 \nu}\left|M_{G T}^{2 \nu}\right|^{2}
$$

with

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

- $G_{2 \nu}$ contains the phase space factors and the axial coupling constant g_{A}
- summation over intermediate states
- to quench or not to quench ? $\left(\sigma \tau_{\text {eff. }}\right)$

The theoretical expression of the half-life of the 2ν mode can be written as:

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=G_{2 \nu}\left|M_{G T}^{2 \nu}\right|^{2}
$$

with

$$
M_{G T}^{2 \nu}=\sum_{m} \frac{\left\langle 0_{f}^{+}\left\|\vec{\sigma} t_{-}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|\vec{\sigma} t_{-}\right\| 0_{i}^{+}\right\rangle}{E_{m}+E_{0}}
$$

- $G_{2 \nu}$ contains the phase space factors and the axial coupling constant g_{A}
- summation over intermediate states
- to quench or not to quench ? $\left(\sigma \tau_{\text {eff. }}\right)$
- does a good $2 \nu \mathrm{ME}$ guarantee a good $0 \nu \mathrm{ME}$?

2ν strength function in ${ }^{48} \mathrm{Ca},{ }^{130} \mathrm{Te}$ and ${ }^{136} \mathrm{Xe}$

Parent nuclei	${ }^{48} \mathrm{Ca}$	${ }^{76} \mathrm{Ge}$	${ }^{82} \mathrm{Se}$	${ }^{130} \mathrm{Te}$	${ }^{136} \mathrm{Xe}$
$T_{1 / 2}^{2 \nu}$ (g.s.) th.	$3.7 E 19$	$1.15 E 21$	$3.4 E 19$	$4 E 20$	$6 E 20$
$T_{1 / 2}^{2 \nu}$ (g.s.) exp	$4.2 E 19$	$1.4 E 21$	$8.3 E 19$	$2.7 E 21$	$2.38 E 21$

Quenching of GT operator in the pf-shell

Nucleus	Uncorrelated	Correlated		Expt.
		Unquenched	$Q=0.74$	
${ }^{51} \mathrm{~V}$	5.15	2.42	1.33	1.2 ± 0.1
${ }^{54} \mathrm{Fe}$	10.19	5.98	3.27	3.3 ± 0.5
${ }^{55} \mathrm{Mn}$	7.96	3.64	1.99	1.7 ± 0.2
${ }^{56} \mathrm{Fe}$	9.44	4.38	2.40	2.8 ± 0.3
${ }^{58} \mathrm{Ni}$	11.9	7.24	3.97	3.8 ± 0.4
${ }^{59} \mathrm{Co}$	8.52	3.98	2.18	1.9 ± 0.1
${ }^{62} \mathrm{Ni}$	7.83	3.65	2.00	2.5 ± 0.1

Neumann-Cosel et al.
Phys. Lett. B433 1 (1998)

Quenching of M1 operator in the pf-shell

```
KB3 interaction
```



```
Neumann-Cosel et al.
Phys. Lett. B433 1 (1998)
```


Quenching of M1 operator in the pf-shell

Quenching of GT operator in the pf-shell

FIG. 3. Density difference between ${ }^{206} \mathrm{~Pb}$ and ${ }^{205} \mathrm{Tl}$. The experimental result of Cavendon et al. (1982) is given by the er- $2 \mathrm{~d}_{5 / 2}$ - -9696 ror bars; the prediction obtained using Hartree-Fock orbitals with adjusted occupation numbers is given by the curve. The systematic shift of $0.0008 \mathrm{fm}^{-3}$ at $r \leqslant 4 \mathrm{fm}$ is due to deficiencies
 of the calculation in predicting the core polarization effect.
V. R. Pandharipande, I. Sick and P. K. A. deWitt Huberts, Rev. mod. Phys. 69 (1997) 981

Quenching of GT operator in the pf-shell

If we write

$$
\begin{aligned}
& |\hat{i}\rangle=\alpha|0 \hbar \omega\rangle+\sum_{n \neq 0} \beta_{n}|n \hbar \omega\rangle, \\
& |\hat{f}\rangle=\alpha^{\prime}|0 \hbar \omega\rangle+\sum_{n \neq 0} \beta_{n}^{\prime}|n \hbar \omega\rangle
\end{aligned}
$$

then

$$
\langle\hat{f}\|\mathcal{T}\| \hat{i}\rangle^{2}=\left(\alpha \alpha^{\prime} T_{0}+\sum_{n \neq 0} \beta_{n} \beta_{n}^{\prime} T_{n}\right)^{2}
$$

- $n \neq 0$ contributions negligible
- $\alpha \approx \alpha^{\prime}$
projection of the physical wavefunction in the
$0 \hbar \omega$ space is $Q \approx \alpha^{2}$
transition quenched by Q^{2}

Calculation of Gamow-Teller and two-neutrino double- β decay properties for ${ }^{130} \mathbf{T e}$ and ${ }^{136} \mathrm{Xe}$ with a realistic nucleon-nucleon potential
L. Coraggio,,${ }^{1, *}$ L. De Angelis, ${ }^{1}$ T. Fukui, ${ }^{1}$ A. Gargano, ${ }^{1}$ and N. Itaco ${ }^{1,2}$

Renormalisation of the GT by Many-Body Perturbation Theory

$$
\langle\Psi| \mathcal{O}|\Psi\rangle=\left\langle\Psi_{\text {eff }}\right| \mathcal{O}_{\text {eff }}^{(1)}+\mathcal{O}_{\text {eff }}^{(1,2)}\left|\Psi_{\text {eff }}\right\rangle
$$

Calculation of Gamow-Teller and two-neutrino double- β decay properties for ${ }^{130} \mathbf{T e}$ and ${ }^{136} \mathrm{Xe}$ with a realistic nucleon-nucleon potential
L. Coraggio,,${ }^{1 . *}$ L. De Angelis, ${ }^{1}$ T. Fukui, ${ }^{1}$ A. Gargano, ${ }^{1}$ and N. Itaco ${ }^{1,2}$

Renormalisation of the GT by Many-Body Perturbation Theory

$$
\langle\Psi| \mathcal{O}|\Psi\rangle=\left\langle\Psi_{\text {eff }}\right| \mathcal{O}_{\text {eff }}^{(1)}+\mathcal{O}_{\text {eff }}^{(1,2)}\left|\Psi_{\text {eff }}\right\rangle
$$

Towards reliable predictions of NMEs for $(\beta \beta)_{0 \text { w within }}$ SSQRPA

- A Gamow-Teller (GT)-type term is the dominant contribution in NMEs
- Even if the two processes have of course a different nature,) NMEs predictions would be more trusworthy if the employed many-body model is able to provide GT spectra in agreeement with experiment (well-known problem of the missing strength: the operators are quenched by hand to reproduce data)
- Incoherence and open problem: available many-body models often use by-hand-quenched operators in GT, quenched axialvector coupling constant g_{A} value in single β decay, and the bare value of g_{A} in $(\beta \beta)_{0 \nu}$!!
- Promising direction: with the Substracted Second RandomPhase Approximation (SSRPA) an important amount of GT strengt is naturally pushed at higher energies in agreement with the data. The experimental spectra are reproduced without altering excitation operator. This model can be safely used for computing NMEs with bare g_{A}

$$
\left[T_{1 / 2}^{0 \nu}\left(0^{+} \rightarrow 0^{+}\right)\right]^{-1}=G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left\langle m_{\nu}^{\beta \beta}\right\rangle^{2}
$$

PHYSICAL REVIEW LETTERS 125, 212501 (2020)

Gamow-Teller Strength in ${ }^{48} \mathrm{Ca}$ and ${ }^{78} \mathrm{Ni}$ with the Charge-Exchange Subtracted Second Random-Phase Approximation
D. Gambacurtae, ${ }^{1}$ M. Grassoe, ${ }^{2}$ and J. Engel ${ }^{3}{ }^{3}$
${ }^{1}$ INFN-LNS, Laboratori Nazionali del Sud 95 I23 Catania. Laly
${ }^{3}$ Department of Physics and Astronomy, CB 3255, Universiry of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
Integrated GT Strength up to 20 MeV in ${ }^{48} \mathrm{Ca}$

For the first time, the GT spectrum of ${ }^{48} \mathrm{Ca}$ is reproduced without resorting to quenching Collaboration with LNS Catania, Italy and North Carolina University,US

- Incorporation of 2-body currents (2BC) operators in Effective Field Theory context
- Ab-Initio NCSM and VSIMSRG many-body methods with 2 N and 3 N interactions
- No need for an extra quenching factor
P. Gysbers et al., Nature Physics (2020)

$$
\langle\Psi| \mathcal{O}|\Psi\rangle=\left\langle\Psi_{\text {eff }}\right| \mathcal{O}_{\text {eff }}^{(1)}+\mathcal{O}_{\text {eff }}^{(1,2)}\left|\Psi_{\text {eff }}\right\rangle
$$

- Incorporation of 2-body currents (2BC) operators in Effective Field Theory context
- Ab-Initio NCSM and VSIMSRG many-body methods with 2 N and 3 N interactions
- No need for an extra quenching factor
P. Gysbers et al., Nature Physics (2020)

$$
\langle\Psi| \mathcal{O}|\Psi\rangle=\left\langle\Psi_{\text {eff }}\right| \mathcal{O}_{\text {eff }}^{(1)}+\mathcal{O}_{\text {eff }}^{(1,2)}\left|\Psi_{\text {eff }}\right\rangle
$$

- Incorporation of 2-body currents (2BC) operators in Effective Field Theory context
- Ab-Initio NCSM and VSIMSRG many-body methods with 2 N and 3 N interactions
- No need for an extra quenching factor
P. Gysbers et al., Nature Physics (2020)

$$
\langle\Psi| \mathcal{O}|\Psi\rangle=\left\langle\Psi_{\text {eff }}\right| \mathcal{O}_{\text {eff }}^{(1)}+\mathcal{O}_{\text {eff }}^{(1,2)}\left|\Psi_{\text {eff }}\right\rangle
$$

Exchange of a light neutrino, only left-handed currents

The theoretical expression of the half-life of the 0ν mode can be written as:

$$
\left[T_{1 / 2}^{0 \nu}\left(0^{+} \rightarrow 0^{+}\right)\right]^{-1}=G_{0 \nu}\left|M^{0 \nu}\right|^{2}\left\langle m_{\nu}\right\rangle^{2}
$$

CLOSURE APPROXIMATION then
$\left\langle\Psi_{f}\left\|\mathcal{O}^{(K)}\right\| \Psi_{i}\right\rangle \quad$ with $\quad \mathcal{O}^{(K)}=\sum_{i j k \mid} W_{i j k l}^{\lambda, K}\left[\left(a_{i}^{\dagger} a_{j}^{\dagger}\right)^{\lambda}\left(\tilde{a}_{k} \tilde{a}_{l}\right)^{\lambda}\right]^{K}$

CLOSURE APPROXIMATION then

CLOSURE APPROXIMATION then

We are left with a "standard" nuclear structure problem

$$
M^{(0 \nu)}=M_{G T}^{(0 \nu)}-\left(\frac{g_{V}}{g_{A}}\right)^{2} M_{F}^{(0 \nu)}-M_{T}^{(0 \nu)}
$$

emitter	$\left\langle m_{\nu}\right\rangle$ $\left(\mathrm{T}_{\frac{1}{2}}=10^{25} \mathrm{y}.\right)$	$\mathrm{M}_{0 \nu}^{\text {tot }}(\mathrm{UCOM})$
${ }^{48} \mathrm{Ca}$	0.63	0.85
${ }^{76} \mathrm{Ge}$	0.72	2.81
${ }^{82} \mathrm{Se}$	0.37	2.64
${ }^{96} \mathrm{Zr}$		
${ }^{100} \mathrm{Mo}$		
${ }^{110} \mathrm{Pd}$		1.60
${ }^{116} \mathrm{Cd}$	0.46	2.62
${ }^{124} \mathrm{Sn}$	0.37	2.88
${ }^{128} \mathrm{Te}$	1.32	2.65
${ }^{130} \mathrm{Te}$	0.28	2.19
${ }^{136} \mathrm{Xe}$	0.38	
${ }^{150} \mathrm{Nd}$	heavy and deformed!	

Pairing correlations and $0 \nu \beta \beta$ decay
$0 \nu \beta \beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

Ideal case: superfluid nuclei reduced with high-seniorities

E. Caurier et al., PRL100 052503 (2008)

Addition of isoscalar pairing reduces matrix element value

Hinohara, Engel, PRC 90031301 (2014)

Related to approximate $\operatorname{SU}(4)$ symmetry of the $\sum H(r) \sigma_{i} \sigma_{j} \tau_{i} \tau_{j}$ operator

Pairing correlations and $0 \nu \beta \beta$ decay
$0 \nu \beta \beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

Ideal case: superfluid nuclei reduced with high-seniorities

E. Caurier et al., PRL100 052503 (2008)

Addition of isoscalar pairing reduces matrix element value

E. Caurier et al., PRL100 052503 (2008)

Related to approximate $\operatorname{SU}(4)$ symmetry of the $\sum H(r) \sigma_{i} \sigma_{j} \tau_{i} \tau_{j}$ operator

$0 \nu \beta \beta$ matrix elements: last 10 years

Comparison of nuclear matrix elements calculations: 2012 vs 2017

P. Vogel, J. Phys. G39 124002 (2012)

J. Engel, Rep. Prog. Phys. 80046301 (2017)

What have we learned in the last 10 years?

For ${ }^{48} \mathrm{Ca}$ enlarge configuration space from pf to sdpf
4 to 7 orbitals, dimension 10^{5} to 10^{9} increases matrix elements but only moderatly 30% Iwata et al. PRL116 112502 (2016)

Contributions dominated by pairing
2 particle - 2 hole excitations enhance the $\beta \beta$ matrix element, Contributions dominated by
1 particle-1 hole excitations suppress the $\beta \beta$ matrix element

Large configuration space calculations in 2 major oscillator shells include all relevant correlations: isovector/isoscalar pairing, deformation Many-body approach: Generating Coordinate Method (GCM)

${ }^{76}$ Ge nuclear matrix elements in 2 major shells very similar to shell model nuclear matrix element in 1 major shell

Renormalisation of the $(\beta \beta)_{0 \nu}$ operator by MBPT

PHYSICAL REVIEW C 101, 044315 (2020)

Calculation of the neutrinoless double- $\boldsymbol{\beta}$ decay matrix element within the realistic shell model
L. Coraggio, ${ }^{1}$ A. Gargano, ${ }^{1}$ N. Itaco $\odot,{ }^{2,1}$ R. Mancino ${ }^{2,1}$, and F. Nowacki ${ }^{3,2}$

The reduction of nuclear matrix elements for the neutrinoless mode much smaller than for the 2-neutrinos mode

Valence Ab-Initio calculations

	${ }^{48} \mathrm{Ca}$			${ }^{76} \mathrm{Ge}$			${ }^{82} \mathrm{Se}$		
	HO	HF	IMSRG	HO	HF	IMSRG	HO	HF	IMSRG
$G T$	0.51(1)	0.46 (1)	0.54(1)	4.2(2)	3.5(2)	2.04(10)	3.39(1)	2.76 (1)	1.19(5)
F	0.13(1)	0.13(1)	0.16(1)	0.47 (1)	0.42(1)	0.46 (2)	0.39(1)	0.35(1)	0.39(1)
T	-0.07(1)	-0.08(1)	-0.12(1)	-0.04(1)	-0.02(1)	-0.37(2)	-0.04(1)	-0.02(1)	-0.33(1)
Total	$0.57(1)$	0.51(1)	0.58(1)	4.6(2)	3.9(2)	2.14(9)	3.77 (1)	3.09(1)	1.24(5)

A New LEADING MECHANISM FOR

NeUTrinoless Double-Beta Decay

Irène Joliot-Curie I. Cirigliano, ..., U. van Kolck, Phys. Rev. Lett. 122 (2019) 143001; Phys. Rev.

C 100 (2019) 055504

Variational Monte Carlo
orthogonality initial/final states
feature of realistic transitions

short-range exchange
$>$ eventually calculable in lattice QCD
> estimated from
charge-independence breaking
... but neglected in all existing calculations
nuclear matrix element:

$$
\begin{gathered}
A_{0 v 2 \beta}=\int d r C(r) \\
\frac{A_{0 v 2 \beta}^{(S)}}{A_{0 v 2 \beta}^{(L)}} \approx 0.8
\end{gathered}
$$

SIGNIFICANT!

J. Engel, Rep. Prog. Phys. 80

List of criteria for a critical assessment

- reproduce low-lying states spectroscopy in parent and daughter nuclei
- reproduce ElectroMagnetic properties
- reproduce single Gamow-Teller properties
- reproduce $(\beta \beta)_{2 \nu}$ properties

Not much calculations left ...

Reliable nuclear matrix elements needed to plan and fully explolt impressive experiments looking for neutrinoless double-beta decay

- Matrix elements differences
between present calculations, factor 2-3 besides additionnal "quenching" ?
- ${ }^{48} \mathrm{Ca}$ and ${ }^{76} \mathrm{Ge}$ matrix elements in larger configuration space increase $\lesssim 30 \%$, missing correlations introduced in IBM, EDF
- Ab-initio calculations of β decays do not need additionnal "quenching",
Ab-initio matrix elements for ${ }^{48} \mathrm{Ca}$ (several approaches), ${ }^{76} \mathrm{Ge}$ and ${ }^{82} \mathrm{Ge}$
- $2 \nu \beta \beta$ decay, μ-capture $/ \nu$-nucleus scattering and double Gamow-Teller transitions can give insight on $0 \nu \beta \beta$ matrix elements

Contrary to light-neutrino exchange, for heavy-neutrino exchange decay shell model, IBM and EDF matrix elements agree reasonably!

J. Menendez, JPG 45014003
(2018)

A. Neacsu et al., PRC 93024308 (2016)

Suggests differences in treating longer-range nuclear correlations dominant in light-neutrino echange

Compared to light-neutrino exchange
heavy neutrino exchange dominated by shorter internucleon range, larger momentum transfers
heavy neutrino exchange contribution from $J>0$ pairs smaller: pairing most relevant

Long-range correlations (except pairing) not under control
J. Menendez, JPG 45014003 (2018)

$$
\begin{array}{rlrl}
M_{G T}^{(0 \nu)} & =\left\langle 0_{f}^{+}\left\|\sum_{n, m} h\left(\sigma_{n} \cdot \sigma_{m}\right) t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle, & \chi_{F}=\left\langle 0_{f}^{+}\left\|\sum_{n, m} h t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle\left(\frac{g_{V}}{g_{A}}\right)^{2} / M_{G T}^{(0 \nu)}, \\
\chi_{G T}^{\prime} & =\left\langle 0_{f}^{+}\left\|\sum_{n, m} h^{\prime}\left(\sigma_{n} \cdot \sigma_{m}\right) t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle / M_{G T}^{(0 \nu)}, & \chi_{F}^{\prime}=\left\langle 0_{f}^{+}\left\|\sum_{n, m} h^{\prime} t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle\left(\frac{g_{V}}{g_{A}}\right)^{2} / M_{G T}^{(0 \nu)}, \\
\chi_{G T}^{\omega} & =\left\langle 0_{f}^{+}\left\|\sum_{n, m} h_{\omega}\left(\sigma_{n} \cdot \sigma_{m}\right) t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle / M_{G T}^{(0 \nu)}, & \chi_{F}^{\omega}=\left\langle 0_{f}^{+}\left\|\sum_{n, m} h_{\omega} t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle\left(\frac{g_{V}}{g_{A}}\right)^{2} / M_{G T}^{(0 \nu)}, \\
\chi_{T} & =\left\langle 0_{f}^{+}\left\|\sum_{n, m} h^{\prime}\left[\left(\sigma_{n} \cdot \hat{r}_{n, m}\right)\left(\sigma_{m} \cdot \hat{r}_{n, m}\right)-\frac{1}{3} \sigma_{n} \cdot \sigma_{m}\right] t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle / M_{G T}^{(0 \nu)}, \\
\chi_{P} & =\left\langle 0_{f}^{+}\left\|i \sum_{n, m} h^{\prime}\left(\frac{r_{+n, m}}{2 r_{n, m}}\right)\left[\left(\sigma_{n}-\sigma_{m}\right) \cdot\left(\hat{r}_{n, m} \times \hat{r}_{+n, m}\right)\right] t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle \frac{g_{V}}{g_{A}} / M_{G T}^{(0 \nu)}, \\
\chi_{R} & =\frac{1}{6}\left(g_{-\frac{1}{2}}^{s}-g_{\frac{1}{2}}^{s}\right)\left\langle 0_{f}^{+}\left\|\sum_{n, m} h_{R}\left(\sigma_{n} \cdot \sigma_{m}\right) t_{n-} t_{m-}\right\| 0_{i}^{+}\right\rangle \frac{g_{V}}{g_{A}} / M_{G T}^{(0 \nu)} .
\end{array}
$$

$$
\begin{aligned}
h(r,\langle\mu\rangle) & =\frac{R_{0}}{r} \phi\left(\langle\mu\rangle m_{e} r\right), \\
h^{\prime}(r,\langle\mu\rangle) & =h+\langle\mu\rangle m_{e} R_{0} h_{0}(\langle\mu\rangle r), \\
h_{\omega}(r,\langle\mu\rangle) & =h-\langle\mu\rangle m_{e} R_{0} h_{0}(\langle\mu\rangle r), \\
h_{R}(r,\langle\mu\rangle) & =-\frac{\langle\mu\rangle m_{e}}{M_{i}}\left(\frac{2}{\pi}\left(\frac{R_{0}}{r}\right)^{2}-\langle\mu\rangle m_{e} R_{0} h\right)+\frac{4 \pi R_{0}^{2}}{M_{p}} \delta(r), \\
h_{0}(x) & =-\frac{d \phi}{d x}(x) \\
\phi(x) & =\frac{2}{\pi}\left[\sin (x) C_{i n t}(x)-\cos (x) S_{i n t}(x)\right], \\
\frac{d \phi}{d x} & =\frac{2}{\pi}\left[\sin (x) C_{i n t}(x)+\cos (x) S_{i n t}(x)\right]
\end{aligned}
$$

$S_{\text {int }}(x)$ and $C_{\text {int }}(x)$ being the integral sinus and cosinus functions,

$$
S_{\text {int }}(x)=-\int_{x}^{\infty} \frac{\sin (\zeta)}{\zeta} d \zeta, \quad C_{\text {int }}(x)=-\int_{x}^{\infty} \frac{\cos (\zeta)}{\zeta} d \zeta
$$

