Results on Low-Mass WIMPs from a 11 kg d Target Exposure of DAMIC at SNOLAB

GDR DUPhy Plenary Meeting - LPNHE, Paris, 29 Nov-1 Dec 2021

Outline:

- 1. DAMIC at SNOLAB
- 2. Background Rejection
- 3. Background Model
- 4. WIMP Search
- 5. Future Plans

Michelangelo Traina on behalf of the DAMIC collaborations LPNHE, Sorbonne Université, Paris (FR)

DAMIC Collaboration

DAMIC AT SNOLAB

- **DArk Matter In CCDs** collaboration (since 2011)
- Setup beneath 2 km of granite at SNOLAB (Canada) (6 km water equivalent)

Charge-Coupled Devices

- Extremely low noise and dark current \Rightarrow sensitive to $\sim e^{-}$ •
- 3D track reconstruction and particle discrimination capability

...for Dark Matter?

- Record thickness + several CCDs \Rightarrow massive target (~40 g) 7 operational 675 μm
- Different DM search options:
 - WIMP-nucleus coherent scattering
 - Hidden sector light DM-e⁻ interactions

- a) Packaged DAMIC CCD
- b) Copper CCD housing
- c) In-vacuum setup
- d) Pb and polyethylene outer shielding

CHARGE-COUPLED DEVICES

DAMIC science-grade CCDs:

- PolySi gate, buried channel structure
- Fully depleted (40 V substrate)
- High resistivity $\sim 10 \text{ k}\Omega\cdot\text{cm}$
- Thickness: $675 \ \mu m$

Performance:

- Charge transfer inefficiency $< 10^{-6}$
- Readout noise $\sim 1.6 e^-$ (6 eV)
- Dark current < 10⁻³ e⁻/pix/day

BACKGROUNDS AT DAMIC

How we deal with backgrounds:

- Underground operation
- Material selection (assays)
- In situ shielding
- Discrimination and quantification of contaminants ⇒ bkg model

Background contributions:

- ~ 55% in-CCD contaminants
- ~ 30% OFC Copper
- ~ 15% from various detector materials (lead shielding, flex cables, etc.)

 $1 \mathbf{dru} = 1 \mathbf{event} \cdot (\mathbf{keV} \cdot \mathbf{kg} \cdot \mathbf{d})^{-1}$

Main Surface Contaminants

Decay Sequence	$t_{1/2}$	Q-value
$2^{10} \text{Pb} \longrightarrow 2^{10} \text{Bi} + \beta^- + \text{IC}/\gamma$	22.3 y	63.5 keV
$^{210}\text{Bi} \longrightarrow ^{210}\text{Po} + \beta^-$	5.01 d	$1.16 { m MeV}$

Main Bulk Contaminants

Decay Sequence	$t_{1/2}$	Q-value
$3^{32}\text{Si} \longrightarrow {}^{32}\text{P} + \beta^{-}$	150 y	225 keV
$^{32}P \longrightarrow ^{32}S \text{ (stable)} + \beta^-$	14.3 d	$1.71 { m MeV}$
Decay	$t_{1/2}$	Q-value
$^{3}\mathrm{H} \longrightarrow ^{3}\mathrm{He} + \beta^{-}$	12.3 y	$18.6 \mathrm{keV}$

Main Surface Contaminants

Decay Sequence	$t_{1/2}$	Q-value
$^{210}\text{Pb} \longrightarrow ^{210}\text{Bi} + \beta^- + \text{IC}/\gamma$	22.3 y	63.5 keV
$^{210}\text{Bi} \longrightarrow ^{210}\text{Po} + \beta^-$	5.01 d	$1.16 { m MeV}$

Main Bulk Contaminants

Decay Sequence	$t_{1/2}$	Q-value
$\int^{32} \mathrm{Si} \longrightarrow {}^{32}\mathrm{P} + \beta^{-}$	150 y	225 keV
$^{32}P \longrightarrow ^{32}S \text{ (stable)} + \beta^-$	14.3 d	$1.71 { m MeV}$
Decay	$t_{1/2}$	Q-value
$^{3}\mathrm{H} \longrightarrow ^{3}\mathrm{He} + \beta^{-}$	12.3 y	$18.6 \mathrm{keV}$

- ²¹⁰Pb: < 160 μ Bq/kg
- ${}^{32}Si: 140 \pm 30 \,\mu Bq/kg$
- 238 U: < 11 µBq/kg
- 232 Th: < 7.3 µBq/kg

BACKGROUND MODELING

Background model construction:

- **Decay** and **tracking** across detector geometry with Geant4
- CCDs response simulation: charge generation, (partial) collection/ transport, pixelation, binning and readout noise
- Reconstruction to (E,σ_x) space
- Likelihood fit to data in WIMP-safe
 region (6-20 keV) ⇒ extrapolate in
 ROI (0-6 keV)

BACKGROUND SIMULATIONS

Decay and tracking across detector geometry with Geant4

- Livermore physics list: low-energy electromagnetic interactions •
 - Down to 10 eV for electrons, 100 eV for photons
- **Optimized range cuts** based on detector part
- Simulated up to 500M decays for over 1000 isotope-volume • combinations
 - Prominent decay chains and material-specific isotopes simulated
 - ²³⁸U, ²³²Th and ⁴⁰K chains
 - Activation and naturally-occurring radioisotopes
 - Interaction energy and position information

DETECTOR RESPONSE SIMULATION

Detector response simulation

- Charge generated assuming $\langle E_{e-h} \rangle = 3.8 \text{ eV}_{ee}$
- Diffusion model calibrated on muon surface data

Charge collection efficiency based on CCD secondary ion mass spectrometry (SIMS) measurements

Consistent with FNAL calibration

Pixelation, saturation, noise addition and binning

 \Rightarrow Reconstruction into (E, σ_x) distribution

BACKGROUND TEMPLATE FITTING

Construction of Background Templates

- Group in templates according to common materials and decay
- Construct number of expected events per bin, v_{ij}

$$\nu_{ijl} = \sum_{m=0}^{N_{material}} n_{ijm} \times \frac{A_l M_m(\epsilon_{data} t_{run})}{(\epsilon_{sim} N_m)}, \quad \nu_{ij} = \sum_{l=0}^{N_{templates}} C_l \nu_{ij}$$

Compare it to the data bin content, k_{ij} , in a two-dimensional likelihood analysis

$$\ln \mathscr{L} = \sum_{i} \sum_{j} \left[k_{ij} \ln(\nu_{ij}) - \nu_{ij} - \ln(k_{ij}!) \right] - \sum_{n=0}^{N_{assays}} \frac{(C_n^0 - C_n)^2}{2\sigma_n^2}$$

Best-fit C_l 's characterize bkg model

10

Background model extrapolation below 6 keV_{ee}

- Separate extrapolation for CCD1 and CCDs 2-7
- Single (E,z) template construction using simulation • output and best-fit coefficients C_l
- Event sampling: ~200k events per CCD •
- Detector response application •
- Blank-image cluster paste •
- Reconstruction to (E,σ_x) distribution by means of • DAMIC likelihood clustering

BACKGROUND EXTRAPOLATION

LOW ENERGY ANALYSIS

$$\ln \mathscr{L}(s,\epsilon,\overrightarrow{b},\overrightarrow{c}) = \sum_{k}^{2} \left\{ -(\gamma_{k}s + b_{k} + c_{k}) + \sum_{i}^{N_{k}} \right\}$$

Profile likelihood ratio test on joint dataset. Extended likelihood function:

 $\left[s\gamma_k f_s(E_i,\sigma_{x_i}|\epsilon) + b_k f_{b_k}(E_i,\sigma_{x_i}) + c_k f_c(E_i,\sigma_{x_i})\right] + \frac{(b_k - b'_k)^2}{2\sigma_{b_k}^2}$

LOW ENERGY ANALYSIS

Most Plausible Interpretations of the Excess

- Missing front component in bkg model
- Unaccounted detector front-side effect

NEAR-THRESHOLD EXCESS

14

SYSTEMATIC CHECKS

Systematic Checks

- \bullet Fit above 200 eV_{ee} consistent with null hypothesis
- Fit to CCD1 and CCD2-7 data sets separately consistent with joint analysis
- PCC systematic cannot account for the excess
- Front-surface events alone cannot account for the excess
- Local vs Global significance tests: excess is by far the most significant feature in data
- Serial register events excluded as possible source of excess (0.01% of overall exposure)
- Parallel Markov Chain MC analysis

WIMP SEARCH LIMITS

٠

•

DAMIC at SNOLAB:

- WIMP Search paper published on PRL: Phys. Rev. Lett. 125, arXiv:2007.15622 241803
- Spatial coincidence analysis paper published on JINST: JINST 16 (2021) 06, P06019
- Paper detailing background model construction submitted to PRD arXiv:2110.13133
 - Upcoming setup upgrade to investigate excess: two DAMIC-M $6k \times 4k$ and four SENSEI $1k \times 6k$ skipper CCDs arXiv:1706.00028

SUMMARY & FUTURE PLANS

arXiv:2011.12922

arXiv:2001.01476

DAMIC at SNOLAB:

- WIMP Search paper published on PRL: Phys. Rev. Lett. 125, arXiv:2007.15622 241803
- Spatial coincidence analysis paper published on JINST: JINST 16 (2021) 06, P06019
- Paper detailing background model construction submitted to PRD arXiv:2110.13133
- Upcoming setup upgrade to investigate excess: two DAMIC-M $6k \times 4k$ and four SENSEI $1k \times 6k$ skipper CCDs arXiv:1706.00028

DAMIC at Modane:

Kg-scale skipper CCD detector striving for 0.1 dru background rates

See contribution by Claudia De Dominicis: Search for light Dark Matter with DAMIC-M

SUMMARY & FUTURE PLANS

arXiv:2011.12922

arXiv:2001.01476

Thanks for your attention. It was a pleasure to tell you about us!

SENSOR BACKSIDE ANALYSIS

BACKSIDE ANALYSIS: PARTIAL CHARGE COLLECTION

largest uncertainty in our response model

Incorporate it as systematic via back exponential in log-likelihood fit

 $f_{pcc}(E[keV_{ee}];\alpha_{pcc}) = N_{pcc}e^{-\frac{\sqrt{E}}{\alpha_{pcc}}}$

MAIN CONTAMINANTS

Parent Chain	Isoptopes Considered	Simulation ID	Comments
U238	Pa234	234a91z	
	Th234	234a90z	
Ra226	Pb214	214a82z	
	Bi214	214a83z	
Pb210	Pb210	210a82z	surface = Pb210 front/Pb210 back
	Bi210	210a83z	bulk = TotPb210
Th232	Ac228	228a89z	
	Ra228	228a88z	
	Pb212	212a82z	
	Bi212	212a83z	$0.64~\mathrm{BR}$
	Tl208	208a81z	$0.36~\mathrm{BR}$
K40	K40	40a19z	
Activation	Co56	56a27z	(copper/flex/screws)
	Co57	57a27z	
	Co58	58a27z	
	Co60	60a27z	
	Fe59	59a26z	
	Mn54	54a25z	
	$\mathbf{Sc46}$	46a21z	
Si32	Si32	32a14z	(silicon only)
	P32	32a15z	
H3 (Tritium)	H3	3a1z	(silicon only)
Na22	Na22	22a11z	(silicon only)

	/	_
Pa	P	

MAIN CONTAMINANTS II

(b) Uranium Series decay chain

(c) Thorium Series decay chain

MAIN CONTAMINANTS III

Isotope	Half-life	Q_{Max}	Decay properties	Production
^{208}Tl	3.058min	4999 keV	34γ lines: $12.4keV$ to	Coming from the ^{220}Rn
			2614 keV	chain
^{210}Pb	22.23y	63.5 keV	Bismuth γ lines: 9.4keV to	Coming from the ^{222}Rn
			16.3 keV	chain
$^{210}\!Bi$	5.011d	1161.2 keV	Only emission is the β	Coming from the ^{222}Rn
				chain - ${}^{210}Pb$ daughter
$^{212}\!Pb$	10.64h	569.9 keV	Bismuth γ lines: $9.4keV$ to	Coming from the ^{220}Rn
			16.3 keV	chain
$^{212}\!Bi$	60.54min	2252.1 - 6207.26 keV	$64.07\% \ \beta \ \mathrm{and} \ 35.93\% \ lpha$	Coming from the ^{220}Rn
				chain
^{214}Pb	26.916min	1019 keV	Bismuth γ lines: $9.4keV$ to	Coming from the ^{222}Rn
			16.3 keV	chain
$^{214}\!Bi$	19.8min	3270 keV	High Energy $\gamma > 100 keV$	Coming from the ^{222}Rn
220				chain
^{228}Ra	5.75y	45.8 keV	Actinium γ lines: $10.8 keV$	Coming from the ^{232}Th
			to $19.2 keV$	chain
$^{228}\!Ac$	6.15h	2123.8 keV	High Energy $\gamma > 100 keV$	Coming from the
				^{232}Th LAAfi chain
^{234}Th	24.10d	272 keV	Protactinium γ lines:	Coming from the ^{238}U
			11.3keV to $112.6keV$	chain
^{234m}Pa	1.15 min	2269 keV	High Energy $\gamma > 100 keV$	Coming from the ^{238}U
				chain

Table 8: Table of the different radioactive isotopes simulated in the Uranium-Thorium-Actinium series

	/
LP	
PARIS	5

MAIN CONTAMINANTS IV

Isotope	Half-life	Q_{Max}	Decay properties	Production
$^{56}\!Co$	77.236d	4566 keV	High Energy $\gamma > 100 keV$	Produced in the copper by
				spallation
^{57}Co	271.81d	836.2 keV	emission $122 keV \gamma$ line	Produced in the copper by
				spallation
$^{58}\!Co$	70.85d	2307.9 keV	emission $810 keV \gamma$ line	Produced in the copper by
				spallation
$^{60}\!Co$	5.2711y	2823.07 keV	emission $1.173 MeV$ –	Produced in the copper by
			$1.332 MeV \ \gamma \ \text{lines}$	spallation
${}^{59}\!Fe$	44.494d	1565 keV	emission $1.099 - 1.291 MeV$	Produced in the copper by
			γ line	spallation
$^{46}\!Sc$	83.787d	2366.5 keV	emission $0.889 - 1.120 MeV$	Produced in the copper by
			$\gamma ~{ m line}$	spallation
$^{87}\!Rb$	49.3410^9y	282.2 keV	Only emission is the β	Inside the copper and the
				epoxy
$^{54}\!Mn$	312.19d	1377.2 keV	emission $834 keV \gamma$ line	Produced in the copper by
				spallation
$^{40}\!K$	1.210^9y	1311.07 - 1504.69 keV	emission 1460 $keV \gamma$ line	Inside the epoxy
^{137}Cs	30.05y	1175.63 keV	High Energy $\gamma > 100 keV$	Cosmogenic Isotope

Table 9: Table of the different radioactive isotopes present in copper and in epoxy

Isotope	Half-life	Q_{Max}	Decay properties	Production
$^{32}\!Si$	130y - 320y	224.311 keV	Only emission is the β	Production by spallation
				on ${}^{40}\!Ar$
$^{32}\!P$	14.284d	1710.66 keV	Only emission is the β	Daughter of ${}^{32}Si$
$^{3}\!H$	12.312y	18.591 keV	Only emission is the β	Produced by spallation on
				Silicon
^{22}Na	2.6029y	2843.02 keV	emission $511 - 1274 keV$	Produced by spallation on
			γ line- Fluorescence-Auger	Silicon
			from ²² Ne at $0.84keV$	

Table 10: Table of the different radioactive isotopes present in silicon

NEUTRONS IN DAMIC

Sources of neutrons for DAMIC:

- ► Cavern. Polyethylene and Pb attenuate flux: $0.5 \text{ cm}^2 d^{-1} \rightarrow (-10^{-3} \text{ cm}^2 d^{-1}) \rightarrow (-10^{-1} \text{ cm}^2 d^{-1})$
- ▶ Production in Polyethylene and Pb: $< 1 d^{-1}$
- ▶ Production in inner detector components: VIB dominates with ~ $30 d^{-1}$

Neutrons produced in inner components

$$4 \longrightarrow N_{n^0 \ recoils}^{VIB} < 1 \quad over \ WS \ exposure$$
(332.5 days)

Neutrons nuclear recoils minor contribution to bkg model

BACKGROUND CONTROLS

Lessons from DAMIC at SNOLAB:

- 55% in-CCD contaminants -
 - ³H from CCD activation + Surface ²¹⁰Pb from Rn deposition ^(S) Improved storage/transportation protocols
 - Intrinsic ³²Si traces ^{Cond} Rejection of radioactive chains through spatial coincidence -
- 30% OFHC Copper
 - Cu activation and bulk ²¹⁰Pb contamination ^{CP} Use electroformed Cu with minimized activation time -
- 15% mixed material contribution (lead shielding, flex cables, etc.) -
 - About 2 dru
 - Design, material selection and fiducial cuts can all help: prototype low background chamber (LBC) will pave the way to achieve DAMIC-M desired low backgrounds

DAMIC HIDDEN-SECTOR SEARCH

How do we search for hidden-sector candidates?

- Characterize relevant noise: electronic noise and dark current
- Estimate expected hidden-sector particle(s) signal
- Include detector effects (diffusion, pixelation, etc.)
- Bulk excess search
- Limits in $(\sigma_e m_{\chi})$ space $(\sigma_e \rightarrow \kappa \text{ for hidden photons})$

90% C.L. upper limits on the DM-electron free scattering cross section

90% C.L. upper limits on the hidden-photon

