

Organ motion for radiation therapy

Hamid Ladjal

IN2P3-CNAO Workshop 26/11/2021

Laboratoire d'InfoRmatique en Image et Systèmes d'information

LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/Ecole Centrale de Lyon Université Claude Bernard Lyon 1, bâtiment Nautibus 43, boulevard du 11 novembre 1918 — F-69622 Villeurbanne cedex

http://liris.cnrs.fr

Outline

- Context: Organ motion modeling
- Lung tumor motion tracking during radiation treatment
- 4D Dose calculation including organ motion
- Effects of the different breathing patterns on PETbased treatment verification and reconstruction

- Conclusion and futur work

Context: moving organs

Ballistics problem:

- The position of the lung tumor
- Calculate and optimize the dose delivery

Specific problem of Hadrontherapy:

- Knowledge about the organs traversed by the beam
- The position of the Bragg peak depends on the density of the matter traversed by the beam
- O Geometric data = insufficient !!!

Lung tissue

Context: moving organs 1- Imaging techniques: Target localisation techniques

- Imaging the tumour, if possible !!!
- Imaging of anatomical structures rigidly bound to the tumour (ex. bony landmarks)
- Detecting artificial fiducials implanted in or near the tumour (invasive, infection risk, pneumothorax...)

Techniques based on imaging

assume a reproducible motion of the respiratory system.

Existing solutions on tracking:

- Fiducial Markers
- CyberKnife system
- Online Pet Scan

intrusive or invasive the irradiation of the patient

Instalability and Non-reproducibility of the movements

Correlation diaphragm movement vs pancreas and lung tumour

Lung tumor inferior/superior vs left/right motion

Respiratory instability

Correlation between internal motion lungs and external motion thorax

Internal marker : exhalation & inhalation positions

Non-reproducibility of the movements (chaotic?)

Breathing motion Inter/intra fractional uncertainties

- Variability in motion trajectory (hysteresis loop)
- Inter/intra-fraction changes in respiratory parameters (baseline, amplitude and frequency)

Anatomy of the respiratory system.

Breathing is non-reproducible

- Contraction of the diaphragm muscle.

- Intercostal muscles of the ribcage.

The breathing cycle is not regular, Varies in amplitude and in phase from one cycle to another

Diaphragm and Thorax

From CT scan images to Biomechanical Simulation

Pipeline Modeling based CAD modeling for FEM simulation

Approach based on the Biomechanical modeling allowing to:

- Take non reproducible aspects of lung motions into account
- Establish the biomechanical model from patients' geometrical ar physical data
- Be monitored by external sensors during the treatment
- Simulate a "virtual 4D-Scan"
- 4D dose distribution and online imaging control

Biomechanical patient-specific model of the respiratory system

Boundary conditions

an average mean error less than $2.0 \pm 1.3 mm$

respiratory system

Approch

Ladjal et al. MICCAI 2017, IEEE TBME 2021

Experimental validation

Tumor trajectories identified in 4D CT scan images compared to the trajectory calculated from biomechanical FE simulation 9

Unified multi-physical model of the respiratory system

Conclusion and perspectives

Tracking different internal organs from external surrogates Clinical validation of the model by external sensors

- Spiromter
- Thorax movement tracking (RPM markers)

- Experimental studies and pre-clinical validation based on realistic breathing anthropomorphic thorax phantom (LuCa "Lung Cancer")
- Contributing to the development of on-line control systems for Radio hadrontherapy (4D PET, Gamma prompt)
- Open for collaboration

Thank you for your attention