Planning Innovative Cancer Therapies Using RadioElements: the PICTURE project

É. Testa on behalf of the PICTURE collaboration Institut de Physique des 2 Infinis de Lyon

Workshop CNAO-IN2P3 - Pavia, November 26, 2021

Targeted radiotherapies with emission of short-range ions

Therapies

- Alpha Targeted Radiation Therapy (α-TRT)
- Boron Neutron Capture Therapy (BNCT): ${}^{10}B(n, {}^{7}Li)\alpha$

			Target cancer cell	cancer cells
	α -TRT	BNCT	Antigen	
Radionucl.	²²³ Ra, ²²⁵ Ac, ^{212/213} Bi, ²¹¹ At	¹⁰ B	Cell nucleus	
α energies	5–9 MeV	a few MeV	Cancer cell	
lpha ranges	40–100 µm (a few cells)	5–9 µm	Thermal neutron	Aum
LET (keV/µm)	60–100	>200	Le la late	Cancer

Common difficulties in biological dose predictions

- Low-range ions = need for considering the heterogeneity of dose deposition at the cellular level
- Question of the relevant sensitive target at the cell level due to this heterogeneity (nucleus, cytoplasm, membrane...)
- Need for multiscale modeling and adapted biophys. models

Molecular Vector

Antibody + radionuclide

Injection of vectors = metabolic targeting of

(2.79 MeV)

4He + ⁷Li (2,31 MeV) + γ 0,48 MeV

Fig. 1: α -TRT (top) and BNCT (bottom)

Alpha emitter Kill the cell

→ Bindine

Chelator

 ${}^{10}B + n_{th} \longrightarrow [11B]^*$

PICTURE project (collab. IP2I, LPSC, LIRIS)

Objective and funding

- Improve the biological dose prediction for targeted RT involving short-range ions (BNCT & α -TRT)
- 3-year ANR-INCA project (2 postdocs 30 months): March 2021–March-2024

(Main) Material & Methods

- Coupling multiscale Monte Carlo simulations (G4-DNA, GATE/G4) and the NanOx biophysical model
- Perform dedicated radiobiology experiments to constraint NanOx parameters

Fig. 2: Modeling workflow

-	
-	Teete
E.	lesta

PICTURE project

NanOx model: "Nanodosimetry and Oxidative Stress" [Cunha 2017]

Main assumptions

- Sensitive volume: cell nucleus
- 2 types of biological events:

Local lethal even	ts (LLE) Global events (GE)
Event Inactivation of	Oxidative stress
nanometric targe	ts in the sensitive volume
Scale Nanometric	Micrometric
Evaluation Specific energy*	Production of chemical species*

- *: evaluated from Monte Carlo simulation (LPCHEM code [Gervais 2006])
- Cell survival for the configuration $c_{\mathcal{K}}$ (ion impacts, target positions, track structures): ${}^{c_{\mathcal{K}}}S = {}^{c_{\mathcal{K}}}S_{LLE} \times {}^{c_{\mathcal{K}}}S_{GE}$

Full modeling of radiation stochastic effects

- Average cell surviving fraction: $\overline{S(D)} = \sum_{K=0}^{\infty} P(K, D) \cdot \langle {}^{c_K}S \rangle$
 - P(K, D): probability to have K impacts with a dose D
 - \triangleright $\langle c_{\kappa} S \rangle_{c_{\kappa}}$: mean survival over all configurations c_{κ}

Main parameters	Cell nucleus diameter	Effective lethal function of nanometric targets
Main input data	Cell microscopy	\sim 3 cell survival curves
		1 RX + 2 ions (intermediate and high LET ions)

Effective lethal function

- Construction from basis (increasing) functions
- ⇒ Demonstration of threshold and saturation effects [Monini 2020]
- \Rightarrow Parametrization with an error function (3 parameters)

Fig. 4: Effective lethal function of V79 cell line

Main parameters and required input data

 "NanOx predictions for three cell lines irradiated by monoenergetic ions were more often more accurate than the ones issued from 5 other biophysical models (MKM, LEM I–IV)" [Monini 2019]

Current limitations for targeted RT

- Developed for hadrontherapy (ion energy 50-400 MeV/nucleons): not adapted to low-energy predictions ⇒ Low-energy data need
- Need for implementation of an extra-nuclear sensitive volume

Fig. 5: NanOx predictions of α coefficients for HSG cell [Monini 2019]

Radiobiology experiments: Current status of the Radiograaff beamline

Original objective

• Cell irradiations with 3 MeV proton beams (for the 4 MV VdG accelerator in Lyon)

Design

- Double scattering foils and collimation system (broad beam \sim 2 cm², \pm 3% homogeneity)
- Dose monitoring systems (Faraday cup, quartz, scintillating fibers)
- Thermostatic sample-support adapted to living cells

Fig. 6: The Radiograaff beamline

PICTURE project

Biological measurements

- Cell survival curves (clonogenic assay after irradiation)
- 3 different mammalian cell lines: CHO-K1, SQ20B and U87

Beams

- p 3MeV (for biol. reference)
- 4 energies ⁴He (12–35 MeV)
- 4 energies ⁷Li (25–50 MeV)

Full and partial cell traversal

- Objective: Distinguish the contribution of nuclear and extra-nuclear sensitive volumes
- Prospective experiments (very precise dosimetry and ion-range control)

Objective of the PICTURE project

• Improve the biological dose prediction for BNCT and α -TRT

Material and Methods

- Coupling multiscale Monte Carlo simulations (G4-DNA, GATE/G4) and the NanOx biophysical model
- Adaptation of NanOx \Rightarrow 2 sensitive volumes: nuclear and extra-nuclear sensitive volumes
- Cell survival measurements to constraint NanOx parameters:
 - ⁴He (12–35 MeV), ⁷Li (25–50 MeV)
 - 2 irradiation configurations: full and partial cell traversal
- Cell confocal microscopy: 3D cell geometry \Rightarrow Realistic cell modeling in MC simulations

Perspectives of collaboration

- \Rightarrow Radiobiology experiments
- \Rightarrow Biological dose modeling