

How to counteract hypoxia induced radioresistance

Cyclhad

Precy@Strasbourg

Tumor microenvironment

Characterization of hypoxia

=> treatment orientation

Early imaging of treatment efficacy

Cyceron

X ARRONAX

GAN

Irchade

an

RÉGION NORMANDIE

Normal tissue

INSTITUT NATIONAL DU CANCER (CINITS)

GDR Groupement

LALIQUE

Oxygen effect \longrightarrow water radiolysis \longrightarrow ROS formation with oxygen increased radiotoxicity

Gray et al., Br. J. Radiol., 1953; Rockwell et al., Curr. Mol. Med., 2009

• Example with U251 GBM cells at 1% => OER 1% = dose hypoxia / dose normoxia = 1.42

What is the effect of high LET particles such as carbon ions to overcome hypoxia-induced radioresistance ?

Pérès EA et al., Oncotarget, 2014

Glioblastoma radioresistance and hypoxia : interest of high LET particles

Better ballistic

Kawamura et al., Int J Urol, 2020

• Relative biological effect (RBE) = dose X-rays / dose Carbon ions for the same effect on survival

Cell sensitivity to carbon ions increases when increasing LET in normoxia What about in hypoxia ? Comparison of survival after X-rays and carbon ions irradiation in normoxia and hypoxia

Hypoxia-dependent radioresistance with X-rays But also with carbon ions in a cell-type manner

MO and M1 M Φ are more sensitive to irradiation than M2 M Φ

In vivo : GL261 Glioma model developped in immunocompetent mice

XRad225Cx irradiator (Equipex Rec-Hadron, GIP CYCERON)

Leblond M al., Oncotarget, 2017

<u>Oncotarget</u>. 2017 Sep 22; 8(42): 72597–72612. Published online 2017 Aug 7. doi: <u>10.18632/oncotarget.19994</u> PMCID: PMC564 PMID: 2906

M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma

Marine M. Leblond,¹ Elodie A. Pérès,¹ Charly Helaine,¹ Aurélie N. Gérault,¹ Damien Moulin,¹ Clément Anfray,¹ Didier Divoux,¹ Edwige Petit,¹ Myriam Bernaudin,¹ and Samuel Valable¹

Other types of RT ? → what about with C lons ?

IN VIVO APPROACHES

Tumor Volume

Multimodal Imaging to assess treatment efficacy and effects onf the healthy brain tissue

Other related parameters

-immunology -biochemistry

-behavioral tests

-physiology

Hypoxia Angiogenesis ROS formation Inflammation

Brain healthy tissue

	In vitro	In vivo
X-Rays	Fyceron@Caen	Cyceron@Caen
Protons	Cyclhad Cyclotrons pour l'Hadronthérapie +?	Frecy@Strasbourg
C-ions	GANIL@Caen +?	?