Cellular and Molecular Radiobiology Lab (LRCM) activities

Pr Claire Rodriguez-Lafrasse UMR CNRS 5822 - IP2I Lyon-Sud Medical School

CNAO - IN2P3 WORKSHOP 11/23/2021

LRCM activities

To understand and quantify the biological effects of innovative radiotherapies by experimental and clinical radiobiology

✓ Carbon ion therapy and other ions:

- Molecular mechanisms specifically involved in the tumor response
- Biological data for simulation (PICTURE E Testa)
- ✓ Radiosensitizing nanoparticles: AGuIX[®] and CuPRiX[®]

✓ Prediction of tumoral response to radiotherapy (clinics)

Irradiation facilities

GANIL, Caen, France,

(Since 2003, 75 MeV/n) Coll Y Saintigny and F Chevalier

GSI, Darmstadt, Germany

(2004-2012, 9.8 MeV/n) Coll C Fournier and G Taucher Scholtz

<u>NIRS, Chiba, Japan</u>

(Since 2016, SOBP 290 MeV/n) Coll T Nakajima

CAL, Nice, France

(Since 2021, 62.5 MeV/n) Coll B Cambien

Lyon-Sud Medical School Lyon, France, XRAD320, 250 kV

Paradigm of the stealth bomber

to explain the tumor cell response to carbon ions

relies on the spatial distribution of Reactive Oxygen Species (ROS) at the nanometric scale

Monte Carlo simulations of OH° radicals (10⁻¹² s)

2 Gy C-ions (physical equivalent dose)

1 Gy C-ions (biological equivalent dose)

\checkmark Local distribution at the nanometric scale:

- clusters around tracks (C-ions)
- dense and homogeneous distribution (photons)

averaged-dose LET of SOBP: 13 keV/µm (NIRS irradiation)

Very different consequences at the cellular level (stealth-bomber)!

The bomber effect

Subcellular biological targets, such as DNA or organelles are on the trajectories of the high-LET particles

The bomber effect

at the DNA level

✓ Complex DNA lesions; clusters of unrepairable DNA lesions (DSBs)

Wozny *et al.,* Scientific Reports, 2020 Wozny *et al.,* Cancers, 2021

\checkmark Chromosome loss: a specific signature

Limitation of genomic instability

Hanot et al., Plos one, 2012

\checkmark No influence of telomeres' length on cell killing

Glioblastoma patients with long telomeres can advantageously benefit from a carbontherapy

Ferrandon et al. Mol Neurobiol, 2013

Consequences of the bomber effect

Cell death

✓ Earlier and more important compared with photons

\checkmark No specific mechanism involved

early apoptosis or mitotic death + p53-independent ceramide-dependent apoptosis

> Maalouf *et al.*, IJROBP 2009 Alphonse *et al.*, BMC Cancer, 2013 Ferrandon *et al.* Cancer Letter, 2015

✓ More efficient on cancer stem cell killing

Bertrand *et al.,* Stem Cell, 2014 Moncharmont *et al.* Oncotarget, 2016

Consequences of the bomber effect

\checkmark Cell killing is independent of the O₂ concentration

Interest in the treatment of hypoxic tumors

Wozny *et al.,* British Journal of Cancer, 2017 Wozny *et al.* Scientific Reports, 2020

\checkmark Cell killing is independent of the radiation dose-rate

The stealth effect

A large proportion of cell volume not hitten by C-ions:

- thresholds of ROS necessary to trigger survival and defense mechanisms not reached
 - "cell radars not into alarm"

The stealth effect

Less DNA Damage detection (ATM nucleoshuttling) under normoxia or hypoxia
40 SQ20B
Y Data Norm

24

✓ Lower DNA damage signalling and repair (NHEJ/HR) under

Wozny *et al.*, Scientific Reports, 2020 Wozny et al., Cancers, 2021

The stealth effect

✓ No HIF1- α stabilisation: major transcription factor involved in the response to hypoxia

✓ Significant decrease of MMP-2 concentrations

 Few/no activation of invasion/migration signaling pathways (MEK/p38/JNK ; STAT3 ; Akt/mTOR)

Less metastases under normoxia and hypoxia

Montcharmont *et al.* Oncotarget 2016 Wozny *et al.* Cancers 2019

C. Rodriguez-Lafrasse RRS 2021

Summary

Carbon ions better cure radioresistant cancers:

The Bomber effect

- = high RBE and overcoming of radioresistance
- Increased DNA damage
- Independent of the telomere length
- More cell death
- Independent of oxygen concentration and dose rate

- = no/less triggering of adverse effects due
 to the spatial distribution of ROS
- Lower DNA damage detection and repair
- No HIF-1 α stabilization
- No invasion/migration
- No/lower activation of cell survival pathways

Because of the stealth bomber effect, C-ions will be always superior to the best conventional radiotherapy

Collaboration perspectives

- Confirmation of the stealth-bomber effect of carbon ions on: cell proteostasis, membrane lipids and mitochondrial dynamics
- ✓ TEL dependence of the stealth bomber effect (other ions: H⁺, He, higher Z ...)
- Preclinical studies of combo carbon ions/helium/protons/photons with immuno-therapy: impact of tumor microenvironment (ongoing experiments with photons and protons)

Acknowledgements

Cellular and Molecular Radiobiology Lab UMR CNRS 5822

Collaborations

M. Beuve (CNRS 5822) E. Testa (CNRS 5822)

A. Christopoulos (CHUM)
M. Janier (HCL)
T. Nakajima (NIRS)
S. Sauvaigo (LX-Repair)
M.J. Stazia (CDiReC)
C. Tomasetto (IGBMC)
O. Tillement (ILM) ...

LYON AUVERGNE

RHÔNE - ALDES

Thank you for your attention and welcome in Lyon !

C. Rodriguez-Lafrasse RRS 2021