3D sensors for microdosimetry with ions

Consuelo Guardiola¹, Diana Bachiller–Perea¹, Celeste Fleta², David Quirion², Faustino Gómez³

> ¹Université Paris–Saclay, IJCLab, France ²Centro Nacional de Microelectrónica, Spain ³Universidad de Santiago de Compostela, Spain

Relative Biological Effectiveness (RBE) is not constant!

Paganetti et al., Int. J. RadiationOncology Biol. Phys. Vol.53, N2, pp407-421,2002

Relative Biological Effectiveness (RBE) is not constant!

In current clinical practice it is assumed that proton beams are **10%** more efficient than clinical photon beams for cell-killing

Context

Quantify LET

MKM, LEM

$$D_{Biol} = D_{Phys} \times RBE$$

Biological effectiveness (RBE)

Optimize patient treatment preserving healthy tissues

Idea: to create radiation 3D-microdetectors as cellular nucleus

DNA is inside **cellular nucleus** \rightarrow where we need to know **LET**

novel 3D-cylindrical silicon diode: well-defined micro-volume

Novel 3D-cylindrical silicon microdetectors

C. Guardiola et al., Brevet ref: PCT/ES2015/070056 Diameters: 9, 10, 15, 20, 25 μm Thickness: 5, 10, 20 μm

Novel 3D-cylindrical silicon microdetectors

C. Guardiola et al., Brevet ref: PCT/ES2015/070056 Diameters: 9, 10, 15, 20, 25 μm Thickness: 5, 10, 20 μm

Charge Collection Efficiency (CCE)

Studied with ion beam induced charge (IBIC) technique

256 pixels

CCE has effect on the evaluation of the imparted energy

New microdosimeters

Near the edge the CCE may be lower (lower electric field, some carriers diffuse outside detector)

Bachiller-Perea D. et al., IEEE Transactions on Instrumentation & Measurement, Vol.70, 2021

CCE has a radial dependence

CCE decreases slowly from 100 % to 90 % as a function of the radial distance until r \approx 10.75 µm, and then it drastically falls to our detection limit (3.5 %) near the detector edge (< 1.5 µm)

Bachiller-Perea D. et al., IEEE Transactions on Instrumentation & Measurement, Vol.70, 2021

Protons

RBE evaluation <u>at therapeutic fluence rate</u> (5·10⁷ s⁻¹cm⁻²) in carbon therapy (CNAO, Italy) @ 115.23 AMeV ¹²C

Protons

RBE evaluation <u>at therapeutic fluence rate (5</u>·10⁷ s⁻¹cm⁻²) in carbon therapy (CNAO, Italy) @ 115.23 AMeV ¹²C

Prieto-Pena J. et al. IEEE Transactions on Nuclear Science, Vol 66, Issue 7, July 2019

RBE evaluation <u>at therapeutic fluence rate</u> (5·10⁷ s⁻¹cm⁻²) in carbon therapy (CNAO, Italy) @ 115.23 AMeV ¹²C

Prieto-Pena J. et al. IEEE Transactions on Nuclear Science, Vol 66, Issue 7, July 2019

- 18 MeV proton beamline at National Accelerator Centre (CNA, Spain)
- Clinical-equivalent fluence rate (3.10⁷ s⁻¹cm⁻²)

Results

Carbons

Experimental vs Simulated spectra

Guardiola C. et al Phys. Med. Biol. 66 (2021) 114001

Demonstrated feasibility with one 3D-cylindrical microdetector in clinical scenario

Guardiola C. et al Phys. Med. Biol. 66 (2021) 114001

Institut Curie-Center of Proton therapy d'Orsay (ICPO)

 (11.60 ± 0.13) keV·µm⁻¹

Results

Guardiola C. et al, under review in Physics and Imaging in Radiation Oncology (2021)

Ongoing

Covering larger sensitive surfaces (cms)

New layouts

Ongoing

Covering larger sensitive surfaces (cms)

@ 16 MeV Protons

Ongoing

Beam intensity characterization

Bachiller-Perea D.. et al, submitted Scientific Reports

Conclusions

- First 3D-cylindrical microdosimeter
- Microdosimetry measurements at proton & carbon beamlines with clinical fluence rates
- Very good agreement with simulations

Ongoing

- Tests in proton therapy centers
- 4nd generation of arrays to cover larger surfaces
- GUI for data analysis

Thanks for your attention!

Acknowledgments

- Marie Sklodowska-Curie grant
- CNRS-Momentum fellow
- AIDA2020-CERN proof-of-concept, under European Union's Horizon 2020 Research and Innovation programme (No. 654168)

BACKUP SLIDES

In-house Python code for GUI for in-situ fast data analysis

Energy spectra

LET maps

2D LET maps in Silicon

X (pixel)

Water

(mm)

2D LET maps in CT

Ongoing: conversion of 2D LET maps in silicon to patient conversion with AI algorithms

Microfabrication process

- silicon-on-insulator (SOI) wafers, N-type active silicon (5, 10, 20 µm thickness)
- 7 mask levels
- 122 microfabrication steps

Electrical simulation: Synopsis TCAD Sentaurus code

•p+ & n+ doping profiles are approximated as Gaussian decays (10^{19} cm⁻³, 0,3 µm sigma) •1,7µm SiO₂ top and 1µm back-sides (uniform positive 10^{11} cm⁻² for non-irradiated SiO₂) •Silicon resistivity 5 kΩcm

Capacitance-voltage curve

(few representative values)

-Good diode characteristics -Breakdown voltages higher than 60V -Reverse currents <100 pA @ 5V Depleted volume reaching:

- -the backplane at 3V
- -lateral n-contact at 5V