

A Survey of Grid Knowledge and Grid Perception in the Public Sector

HealthGrid 2010

Xin Zhou, Owen Appleton, Henning Müller

- Motivation
- Survey design & interviewees
- Results & Interpretation
- Conclusions

Motivation

- Medical digital data increase rapidly
 - Analysis requires computing power
- Existing Grid infrastructures can fulfil this need
- Little used in clinical environments or in public service sector offices
- Survey was made to gain a better understanding of :
 - The current situation and needs
 - The perception of the decision makers on Grids
 - The obstacles for Grid deployment

Background of interviewees : occupation

Background of interviewees : IT competence

IT qualification

IT professional experience

Background of interviewees : interests

- Professional interests:
 - High level users
 - Short-term resource availability
 - Possible Overhead
 - Benefits for projects
 - System experts (or administrators)
 - Robustness of new technology
 - Interoperability with existing systems
 - Decision makers
 - Technical trends
 - Validation for new technologies

- Survey design:
 - Users
 - Application needs
 - System experts (or administrators)
 - Existing systems
 - Constraints
 - Decision makers
 - IT strategies
 - Validation for new technologies
- 30 minutes to 1,5h
- Face to faace interview, answers recorded and interpreted

Results & intepretations

Strategies

- IT budget:
 - Hospitals: ~100 mio CHF, ~3% of total budget
 - Government: ~187 mio CHF, ~1.2% of the total budget.
- Validation of technologies :
 - Bottom-up validation (Universities: quick adoption)
 - Depends on project needs (funding)
 - Initiated by researches
 - Top-down validation (Government)
 - Consultants survey new technologies and give propositions
 - Out-sourcing the development
 - Cross validation (Hospitals: neither early nor late adoption)
 - System admins validations together with end users

Hardware and its configuration

Questions	Universities	Hospitals
Nb of PCs	>5′000 PC	~8′000 PCs
Nb of servers	~150	>200
PC configuration	2-core CPU 1GB RAM	2-core CPU 1GB RAM
Server config.	variable: standard 2- core CPU 2~4G RAM	1~32CPU
		1~32GB RAM
OS for PCs	70% Windows XP, 30% MAC	Mainly Windows XP, a few MAC
OS for servers	Solaris, MAC, Linux	Suse Linux, Solaris
PC renewal cycle	3~5 years	3 years
Servers renewal cycle	5~10 years	5~8 years

- PCs (resource target to build grid):
 - Advantages :
 - Large number of PCs exist
 - Configuration and operating systems are homogeneous
 - Renewed regularly
 - Disadvantages:
 - Most use Windows OS
 - Uncertainty of availability (owned by desktop PC users)

Servers

- Either owned by specific group with dedicated application modules
- Or running applications in high priority

- From 1GB to 10GB bound width
- Hospitals and Government hold confidential data protected by policy and proxy (NAT, firewall)
- Network charge depends on the rushing hours (needs as well as limits)
 - Sharing: given resources or taken away?
 - Grid running 24h/24h? 7d/7d? (Hospitals outbound network is 70%~80% used 20h/day)
 - How (who) to decide to start or stop the grid service? (Users? Administrator? Or config in middlewares?)

OS for Applications

Application needs : interface to be adapted

Q: What aspects of Grid computing are most interesting for you?
A: computing power (3), Grid web services (3),
distributed storage (1), increased efficiency of resources (2),
simple access to heterogeneous resources (2),
data sharing (4), not interested at all (1)

Q: If you have interest in Grid, cloud and distributed computing what barriers to adoption do you see?

A: application migration (4), change of existing infrastructure (1), lack of expertise (2), not supported commercially (3), Licenses (1), low motivation for sharing(4), legal restriction concerning confidential data (2), obtain funding(1)

- Increasing requirement of computer resources make Grid techniques a trend for further applications
- Main barriers of adoption are motivation of sharing & stability & commercial support (Windows platform is important)
- Firewall NAT adapted solutions (http-based)
- Should focus on rush hour usage rather than computational intensive
- Application migration is the most mentioned technical obstacle
- By solving these problems, Grid technology can be used in Public section

Thank You for Your Attention!

Questions?

http://www.knowarc.eu/