Using Graphics Processors to Accelerate Protein Docking Calculations

Dave Ritchie Orpailleur Team INRIA Nancy – Grand Est

Protein-Protein Interactions – Why Are They Important ?

- Protein-protein interactions (PPIs) define the "machinery" of life
- Humans have about 30,000 proteins, each having about 5 PPIs

- Understanding PPIs could lead to immense scientific advances
- Controlling PPIs could have huge therapeutic benefits (new drug molecules)

What is Protein Docking ?

• Protein docking = predicting protein interactions at the molecular level

- If proteins are rigid => six-dimensional search space
- But proteins are flexible => multi-dimensional space!
- Modeling protein-protein interactions accurately is difficult!

Protein Docking Using Fast Fourier Transforms

• Conventional approaches digitise proteins into 3D Cartesian grids...

• ...and use FFTs to calculated TRANSLATIONAL correlations:

 $C[\Delta x,\Delta y,\Delta z] = \sum_{x,y,z} A[x,y,z] imes B[x+\Delta x,y+\Delta y,z+\Delta z]$

- BUT have to rotate one protein and REPEAT, which becomes EXPENSIVE!
- POLAR coordinates allow ROTATIONAL nature of the problem to be exploited

Some Theory – 2D Spherical Harmonic Surfaces

• Use spherical harmonics (SHs) as orthogonal shape "building blocks"

- Reals SHs $y_{lm}(heta,\phi)$, and coeffcients a_{lm}
- Encode distance from origin as SH series to order L:
- $r(heta,\phi) = \sum_{l=0}^{L} \sum_{m=-l}^{l} a_{lm} y_{lm}(heta,\phi)$
- Calculate coefficients by numerical integration
- ROTATIONS: $a'_{lm} = \sum_{m'=-l}^l R^{(l)}_{mm'}(lpha,eta,\gamma) a_{lm'}$

• Good for shape-matching, not so good for docking...

Ritchie and Kemp (1999) J. Comp. Chem. 20 383–395

Docking Needs a 3D "Spherical Polar Fourier" Representation

• Need to introduce special orthonormal Laguerre-Gaussian radial functions, $R_{nl}(r)$

• Parametrise as:
$$\sigma(\underline{r}) = \sum_{nlm}^{N} a_{nlm}^{ au} R_{nl}(r) y_{lm}(heta, \phi),$$
 etc.

• TRANSLATIONS: $a_{nlm}^{\sigma\prime\prime} = \sum_{n'l'}^{N} T_{nl,n'l'}^{(|m|)}(R) a_{n'l'm}^{\sigma}$

SPF Protein Shape-Density Reconstruction

Interior density:

$$au(\underline{r}) = \sum_{n=1}^N \sum_{l=0}^{n-1} \sum_{m=-l}^l a^\sigma_{nlm} R_{nl}(r) \, y_{lm}(heta,\phi)$$

Image	Order	Coefficients
Α	Gaussians	-
В	N = 16	1,496
С	N = 25	5,525
D	N = 30	9,455

DW Ritchie (2003) Proteins Struct. Funct. Bionf. 52 98–106

Protein Docking Using SPF Density Functions

D.W. Ritchie and G.J.L. Kemp (2000) Proteins Struct. Funct. Bionf. 39 178–194

Nvidia Graphics Processors

- Modern GPUs have very high compute performance
- SIMT architecture = simultaneous instructions, multiple threads

- NVIDIA GPUs:
- Up to 4Gb memory
- Up to 240 arithmetic "cores"
- Up to Tera-flop performance
- Easy API with C++ syntax
- Grid of threads SIMT model

• BUT – for best results, need to understand the hardware...

The CUDA Device Architecture

• Typically 8–16 multi-processor blocks, each with 16 thread units

- NB. only a very small amount of fast shared memory is available
- NB. global memory is \sim 80x slower than shared memory
- Strategy: aim for "high arithmetic intensity" in shared memory

CUDA Programming Example - Matrix Multiplication

- Matrix multiplication C = A * B
- Each thread is responsible for calculating one element: C[i,k]

- Conventional algorithm: rows and columns
- C[i,k] = A[i] * B[k]
- Thread-block algorithm working on tiles

- Threads co-operate by reading & sharing tiles of A & B
- Multi-processor launches multiple blocks to compute all of C
- Executing thread-blocks concurrently hides global memory latency

CUDA Programming Example – Matrix Multiplication Kernel

```
__global__ void matmul(int wA, int wB, float *A, float *B, float *C)
ſ
  float Cik = 0.0;
                                              // thread-local result variable
  int by = blockIdx.y, ty = threadIdx.y; // ("this" thread is one of a 2-D grid)
  __shared__ float a_sub[16][16], b_sub[16][16]; // declare shared memory
  for (int j=0; j<wA; j+=16) {
                                              // thread-local loop over tiles of A and B
     int ij = (16*by+ty)*wA + (j+tx);
                                              // thread-local array subscripts
     int jk = (j+ty)*wB + (16*bx+tx);
     a_sub[ty][tx] = A[ij];
                                              // copy global data to shared memory ("I/O")
     b_sub[ty][tx] = B[jk];
     __syncthreads();
                                              // wait until all memory I/O has finished
     for (int jj=0; jj<16; jj++) {
        Cik += a_sub[ty][j] * b_sub[jj][tx];
                                             // multiply row*column in current tiles
     }
     __syncthreads();
                                              // synchronise threads before starting more I/O
  }
  C[(16*by+ty)*wB + (16*bx+tx)] = Cik;
                                             // copy local result -> global memory
}
```

GPU Implementation Part 1 – Rotate and Translate Protein A

- 1. On CPU, calculate multiple (β_A, γ_A) rotations of protein A
- 2. On CPU, re-index translation matrices and rotated coefficients into regular sparse arrays
- 3. On GPU, translate multiple protein A coeffcients using tiled matrix multiplication

GPU Implementation Part 2 – Perform Multiple FFTs

• The overall aim is to calculate multiple 1D FFTs of the form:

$$C(lpha_B) = \sum_m e^{-imlpha_B} \sum_{nl} A^\sigma_{nlm}(R,eta_A,\gamma_A) imes B^ au_{nlm}(eta_B,\gamma_B) \; ,$$

- 4. On GPU, cross-multiply transformed A with rotated B coefficients (as above)
- 5. On GPU, perform batch of 1D FFTs using cuFFT and save best orientations

• 3D FFTs in $(\alpha_B, \beta_B, \gamma_B)$ can be calculated in a similar way...

Results – GPU v's CPU Docking Performance

- Key Hex functions implemented using only 5 or 6 CUDA kernels
- 1D and 3D FFTs are calculated using Nvidia's cuFFT library
- Here, GPU = Nvidia FX-5800, CPU = Intel i7-965

- Hex 1D correlations are up to 100x faster on FX-5800 than on iCore7
- Overall, including set-up, Hex 1D FFT is about 45x faster on FX-5800 than on iCore7

Results – Multiple GPUs and CPUs

• With Multi-threading, we can use as many GPUs and CPUs as are available

- For best performance: use 2 GPUs alone, or 6 CPUs plus 2 GPUs
- With 2 GPUs, docking takes only about 15 seconds very important for large-scale!

"Hex" and "HexServer" – Publicly Available Docking Tools

Hex Protein Docking Server - SeaMonkey	
Eichier Édition Affichage Allerà Marque-pages Qutils Fenêtre Aide	
Précédent Sulvant Actualiser Arrêter	Rechercher 🧳 💎
Accueil Marque-pages	
a the	Hex Server
Dealsing	- Definition stop 1 of 2
Docking	g Deminition - step 1 of 2
(And and a second se	Receptor PDB File
	Ligand PDB File Parcourir
	Email Address (Optional)
	Correlation Type Shape Only
The second second	Calculation Device GPU 💌
CON RUSSIA	Search Order 25 💌
	reset
474 jobs completed (0 failed)	since 20 Jan 2010. Average waiting time: 0 min. 15 sec.
Heip	Examples More Information
- Mr.	AND
Ma	
ж. П / с1) ая	-nn
20 mm X2 CMI (22	

Macindoe et al. (2010), Nucleic acids Research (featured article)

Conclusions and Future Prospects

- Protein-protein docking on a GPU now takes only a few seconds:
 - This was implemented using only 5 or 6 GPU kernels
 - But a lot of low-level CPU code had to be re-written
- High-throughput multi-shape comparison is now be feasible:
 - Probing PPI networks...
 - Assembling multi-component machines...
 - Electron-microscopy density fitting...
 - Full 3D small-molecule virtual screening...
 - Protein shape matching and classification...

Acknowledgments

BBSRC 1996-2000 EPSRC 2000-2006

ANR 2009–2010

Software & Papers: http://hex.loria.fr/

HexServer: http://hexserver.loria.fr/

Extra Slides

Exploiting Prior Knowledge in SPF Docking

- Knowledge of even only one key residue can reduce search space enormously...
- This accelerates the calculation and helps to reduce false-positive predictions

5D FFT Correlations from Complex Overlap Expressions

(Ritchie, Kozakov, Vajda, (2008) Bioinformatics, 24, 1865–1873)

Complex SHs, Y_{lm} :

$$y_{lm}(heta,\phi) = \sum_t U_{mt}^{(l)} Y_{lt}(heta,\phi)$$

Complex coefficients:

$$A_{nlm} = \sum_t a_{nlt} U_{tm}^{(l)}$$

 \boldsymbol{S}

Complex overlap:

$$=\sum_{kjsmnlv}D_{ms}^{(j)*}(0,eta_{A},\gamma_{A})A_{kjs}^{*}T_{kj,nl}^{(|m|)}(R)D_{mv}^{(l)}(lpha_{B},eta_{B},\gamma_{B})B_{nlv}$$

Collect coefficients:
$$S_{js,lv}^{(|m|)}(R) = \sum_{kn} A_{kjs}^* T_{kj,nl}^{(|m|)}(R) B_{nlv}, \qquad k>j; n>l$$

To give:
$$S = \sum_{jsmlv} D_{ms}^{(j)*}(0,eta_A,\gamma_A) S_{js,lv}^{(|m|)}(R) D_{mv}^{(l)}(lpha_B,eta_B,\gamma_B)$$

Expand as exponentials:

$$D_{mv}^{(l)}(lpha,eta,\gamma) = \sum_t \Gamma_{lv}^{tm} e^{-imlpha} e^{-iteta} e^{-iv\gamma}$$

Hence:

$$S = \sum_{jsmlvrt} \Gamma_{js}^{rm} S^{(|m|)}_{js,lv}(R) \Gamma_{lv}^{tm} e^{-i(reta_A - s\gamma_A + mlpha_B + teta_B + v\gamma_B)}$$

Translation Matrices From Fourier-Bessel Transform Theory

Using spherical Bessel transforms:

$$ilde{R}_{nl}(eta) = \sqrt{rac{2}{\pi}} \int_0^\infty R_{nl}(r) j_l(eta r) r^2 \mathrm{d}r; \qquad \qquad R_{nl}(r) = \sqrt{rac{2}{\pi}} \int_0^\infty ilde{R}_{nl}(eta) j_l(eta r) eta^2 \mathrm{d}eta$$

it can be shown that

$$T_{n'l',nl}^{(|m|)}(R) = \sum_{k=|l-l'|}^{l+l'} A_k^{(ll'|m|)} \int_0^\infty ilde{R}_{nl}(eta) ilde{R}_{n'l'}(eta) j_k(eta R) eta^2 \mathrm{d}eta$$

where

$$A_k^{(ll'|m|)} = (-1)^{rac{k+l'-l}{2}+m}(2k+1)ig[(2l+1)(2l'+1)ig]^{1/2}igg(egin{array}{c} l \ l' \ k \ 0 \ 0 \ 0 \ \end{pmatrix}igg(egin{array}{c} l \ l' \ k \ m \ \overline{m} \ 0 \ \end{pmatrix}$$

- Can derive analytic formulae for both GTO and ETO radial functions
- Requires high precision math library (GMP)...
- Calculate once for $R=1,2,3,...50 {
 m \AA}$ and store on disk (\sim 200Mb)

Inside Hex – High Order FFTs and GPUs

• The SPF gives an analytic way to calculate TRANSLATIONAL + ROTATIONAL correlations:

In particular:

$$S_{AB} = \sum_{jsmlvrt} \Lambda_{js}^{rm} T_{js,lv}^{(|m|)}(R) \Lambda_{lv}^{tm} e^{-i(reta_A - s\gamma_A + mlpha_B + teta_B + v\gamma_B)}$$

- This allows high order FFTs to be used 1D, 3D, and 5D
- It also allows calculations to be easily ported to modern GPUs

- Up to 240 arithmetic "cores"
- Grid of threads SIMT model
- Correlation speed-up \geq 100x
- Overall speed-up = 45x
- GPU docking takes 15 seconds (475x faster than ZDOCK) very important for large-scale!
- D.W. Ritchie, D. Kozakov, S. Vajda (2008) Bioinformatics 24 1865–1873
- D.W. Ritchie, et al. HealthGrid (2010), To Appear
- D.W. Ritchie, V. Venkatraman (2010), In review