Using Graphics Processors
to Accelerate Protein Docking Calculations

Dave Ritchie

Orpailleur Team
INRIA Nancy — Grand Est

Protein-Protein Interactions — Why Are They Important ?

e Protein-protein interactions (PPls) define the “machinery” of life

e Humans have about 30,000 proteins, each having about 5 PPIs

e Understanding PPIs could lead to immense scientific advances

e Controlling PPIs could have huge therapeutic benefits (new drug molecules)

What is Protein Docking ?

e Protein docking = predicting protein interactions at the molecular level

e If proteins are rigid => six-dimensional search space
e But proteins are flexible => multi-dimensional space!

e Modeling protein-protein interactions accurately is difficult!

Protein Docking Using Fast Fourier Transforms

e Conventional approaches digitise proteins into 3D Cartesian grids...

] Surface: +1 B Interior: =150 Interior: +1

e ...and use FFTs to calculated TRANSLATIONAL correlations:
ClAz, Ay, Az| = Zw’y,z
e BUT have to rotate one protein and REPEAT, which becomes EXPENSIVE!

Alx,y,z| X Blx + Ax,y + Ay, z + Az]

e POLAR coordinates allow ROTATIONAL nature of the problem to be exploited

Some Theory — 2D Spherical Harmonic Surfaces

e Use spherical harmonics (SHs) as orthogonal shape “building blocks”

e Reals SHs y,,,(0, ¢) , and coeffcients ay;,

e Encode distance from origin as SH series to order L:

L l
i ’I“(@, ¢) — Zl:O Zmz_l a’lmylm(97 ¢)
e Calculate coefficients by numerical integration

e ROTATIONS: o/ =3, RY (a,8,7)amw

m/=—1 m

e Good for shape-matching, not so good for docking...

Ritchie and Kemp (1999) J. Comp. Chem. 20 383-395

Docking Needs a 3D “Spherical Polar Fourier” Representation

e Need to introduce special orthonormal Laguerre-Gaussian radial functions, R,;(7)

— +1/2
o Ru(r) = NPe 2L,)/ (p); p=r/q, q=20.
R15,0(7“)]
" Solvent Accessible Surface Surface S
Ranolr) Molecular Surface \ Sampling
Y <Y 2, Spheres
Ry50(7)) . .
- Protein Interi /Surface
Normals
R30,0(7“)
0T
1;: r € surface skin 1: r rotein atom
e Surface Skin: o(r)=< """ < . Interior: 7(r) =< <P .
0; otherwise 0; otherwise

e Parametrise as: o(r) = ZN T Bl (1) yim (0, @), etc.

nlm a

o TRANSLATIONS: a2/ =N, 7" (R)ac,,

nlm nl,n

SPF Protein Shape-Density Reconstruction

N n—1 l

Interior density: T(r) = S: S: S: a,mBn(r) yim (0, @)

n=1 =0 m=-—I1

Image Order Coefficients
A Gaussians -
B N =16 1,496
C N =25 5,525
D N = 30 9,455

DW Ritchie (2003) Proteins Struct. Funct. Bionf. 52 98-106

Protein Docking Using SPF Density Functions
a(r)

T(r) \

Favourable: / (0a(r)T5(rR) + Ta(r)op(ry))dV
Unfavourable: /TA(EA)TB(EB)dV
Score: Sip = /(O'ATB + Ta0p — QTaTE)dV Penalty Factor: Q = 11
Orthogonality: SaB = Z (anlm nim T anlm(nlm anlm))
nlm
Search: 6D space = 1 distance + 5 Euler rotations: (R, 34, Y4, @B, 3B,7B)

D.W. Ritchie and G.J.L. Kemp (2000) Proteins Struct. Funct. Bionf. 39 178-194

Nvidia Graphics Processors

e Modern GPUs have very high compute performance

e SIMT architecture = simultaneous instructions, multiple threads

e NVIDIA GPUs:

e Up to 4Gb memory

e Up to 240 arithmetic “cores”
e Up to Tera-flop performance
e Easy API with C++ syntax

e Grid of threads SIMT model

e BUT — for best results, need to understand the hardware...

The CUDA Device Architecture

e Typically 8—16 multi-processor blocks, each with 16 thread units
T 7

Multiprocessor Block O

Thread-Local Memory

O| 1|2 | Thread Processors.|15
><
Shared Memor{16Kb, fast)

Global Memory (256Mb - 4Gh, slow)

Host (PCle)

e NB. only a very small amount of fast shared memory is available
e NB. global memory is ~ 80x slower than shared memory

e Strategy: aim for “high arithmetic intensity” in shared memory

CUDA Programming Example - Matrix Multiplication

e Matrix multiplication C = A * B

e Each thread is responsible for calculating one element: C[i k]

Kk

A

B

k
C
O
bx
C
tX
o|ty

e Conventional algorithm: rows and columns

e C[i.k] = A[i] * B[]

e Thread-block algorithm working on tiles

e Threads co-operate by reading & sharing tiles of A & B

e Multi-processor launches multiple blocks to compute all of C

e Executing thread-blocks concurrently hides global memory latency

CUDA Programming Example — Matrix Multiplication Kernel

__global__ void matmul(int wA, int wB, float *A, float *B, float *C)
{
float Cik = 0.0; // thread-local result variable
int bx = blockIdx.x, tx = threadldx.x; // thread subscripts
int by = blockIdx.y, ty = threadIdx.y; // ("this" thread is one of a 2-D grid)

__shared__ float a_sub[16][16], b_sub[16][16]; // declare shared memory

for (int j=0; j<wA; j+=16) { // thread-local loop over tiles of A and B
int ij = (16*%by+ty)*wA + (j+tx); // thread-local array subscripts
int jk = (j+ty)*wB + (16%bx+tx);
a_sub[ty] [tx] = A[ij]; // copy global data to shared memory ("I/0")
b_sub[ty] [tx] = B[jk];
__syncthreads () ; // wait until all memory I/0 has finished

for (int jj=0; jj<16; jj++) {

Cik += a_sub[ty][jj] * b_sub[jj] [tx]; // multiply rowxcolumn in current tiles
}
__syncthreads () ; // synchronise threads before starting more I/0
}
CL(16*by+ty)*wB + (16*bx+tx)] = Cik; // copy local result -> global memory

GPU Implementation Part 1 — Rotate and Translate Protein A

1. On CPU, calculate multiple (84,7v4) rotations of protein A
2. On CPU, re-index translation matrices and rotated coefficients into regular sparse arrays

3. On GPU, translate multiple protein A coeffcients using tiled matrix multiplication

Re-index arrays

n | I} fﬂ:-f- m=0 m=L
2IEE . Copyto GPU
2 o 1
3 0 2 (0
el [|
. |] !
£ i
2 (2 1 - e —— |
Rotate - _ asanmsismmssndll i
8 — | = € m=-L ! i
M 4 1 C M ! i i
= i
== i
- P i i
0 (i
'
1 ’
— s
4-/ he
” ~
e 5
2
. GPU Matrix --|-- P
wed Re-indexand i Multiplication
Copy to GPU e A
= Ao s E A C
m=0 ¢ s A —" | _ ;
[— kj — P is ——p———— e e
H i : o | H P
nl p E E o
l i 16 16 16

GPU Implementation Part 2 — Perform Multiple FFTs
e The overall aim is to calculate multiple 1D FFTs of the form:

Clap) =) e ™53 A7 (R,B4,74) X B},.(Bs,78)
m nl

4. On GPU, cross-multiply transformed A with rotated B coefficients (as above)

5. On GPU, perform batch of 1D FFTs using cuFFT and save best orientations

m=L Sortand save
& — E;t:::r:f docking predictions
0 L 63 N
I
] 0 (—|'“---, oy et
P ! TR
m=-L | | I: TTReay
o i B
TN ! | I "
M -~ \ | SRt
-~ 1 *u
(B¥)aec ",\ 1 | ~
\ | I
*\JI |
&inm 1
'i I |
! |
Y/
7 '
~ |/ I |
Z I ! |
— - /] # |
I ‘.P
m 1| [eee——(e e e e _—
N : H,

(B1)us

e 3D FFTs in (ap,(BB,7vB) can be calculated in a similar way...

Results — GPU v's CPU Docking Performance

e Key Hex functions implemented using only 5 or 6 CUDA kernels
e 1D and 3D FFTs are calculated using Nvidia’s cuFFT library

e Here, GPU = Nvidia FX-5800, CPU = Intel i7-965

Comparison of GPU and CPU FFT Correlation Rates
3D_GPU -1D_CPU -3D_CPU

= 5] ~N w w £ 3

o [=] (=] o "3 o [l

o =] o o o o o
) L L L L J

1000000 Orientations/sec

=
o
o

50
°im.u.umm
12 14 16 18 20 22 24 26 28 30 32
Polynomial Expansion Order

e Hex 1D correlations are up to 100x faster on FX-5800 than on iCore7

e Overall, including set-up, Hex 1D FFT is about 45x faster on FX-5800 than on iCore7

Results — Multiple GPUs and CPUs

e With Multi-threading, we can use as many GPUs and CPUs as are available

HEX Results - Tandem Blind Docking Search Performance (N=16; N=25)

375 =1XCPU -2xCPU -4xCPU -B6XCPU -8xCPU - 1xGPU -2XGPU -2XCPU_1XGPU -4xCPU_2xGPU -6XCPU_2xGPU -8xCPU_2xGPU

3004

225

Time (seconds)

=

w»

o
1

754

3D_SHAPE_ELECTROSTATICS

1D_SHAPE 1D_SHAPE_ELECTROSTATICS

3D_SHAPE

e For best performance: use 2 GPUs alone, or 6 CPUs plus 2 GPUs

e With 2 GPUs, docking takes only about 15 seconds — very important for large-scale!

“Hex” and “HexServer” — Publicly Available Docking Tools

B Hex Protein Docking Server - SeaMonkey.

Fichier Edion Affichage Aller 3 Morquspages Quils Fendlre Aide

2 .3 & 5

Précédent Suiant Actualissr At

Jonadi]

[2_Rechercher

= g
Imprimer

U 4 e | B marauepages

Hex Server

Docking Definition - step 1 of 2

474 jobs completed (0 falled) since 20 Jan 2010. Average waiting time: 0 mm. 15 sec

Help Examples More Information

—
Receptor PDB File | [(Parcowir.]

Ligand PDB File | [(Parcour.
Fmai Address (Optional)]
Correlation Type | Shape Only &

Web Service

PHP | &=

Submit to
cluster

'
ee——
Docked
complexes

[Hex Protein Docking Server - SeaMonkey.

Fichier Edion Affichage Aller 3 Morquspages Quils Fendlre Aide

a

loria.frfdocking_parameters.php

Précédent Actualiser Arrét:

[2_Rechercher = . g
Inprimer

U 4 e | B marauepages

e

Hex Server

&

Docking Parameters - step 2 of 2

Intermolecular Axis Receptor Ligand

Origin Residue | (defaulty || (defauly |

Intesface Residue | (defoulty ¥ | (getouty]

Range Angle | 180 % 130 ¥
Step Sizes| 75 v| |75 v
Number of Solutions [100 ¥
Receptor —
Origin ’ Compressed Resulis zip |
Interface Residues gg_a; nd

Help Examples More Information

Y

N

«’«

/JI

b EL \Z GE @ Chergs

==

CPU Cluster

v

\

OAR Grid
Scheduler

v v

CPU Node

\GPU Node GPU Hude_/

Macindoe et al. (2010), Nucleic acids Research (featured article)

Conclusions and Future Prospects

e Protein-protein docking on a GPU now takes only a few seconds:
e This was implemented using only 5 or 6 GPU kernels

e But a lot of low-level CPU code had to be re-written

e High-throughput multi-shape comparison is now be feasible:

Probing PPl networks...

Assembling multi-component machines...

Electron-microscopy density fitting...

Full 3D small-molecule virtual screening...

e Protein shape matching and classification...

Acknowledgments

BBSRC 1996-2000
EPSRC 2000-2006

ANR 2009-2010

Software & Papers: http://hex.loria.fr/

HexServer: http://hexserver.loria.fr/

Extra Slides

Exploiting Prior Knowledge in SPF Docking

Intermolecular Axis

Range Angles

Receptor B
Origin

Interface Residues

e Knowledge of even only one key residue can reduce search space enormously...

e This accelerates the calculation and helps to reduce false-positive predictions

5D FFT Correlations from Complex Overlap Expressions
(Ritchie, Kozakov, Vajda, (2008) Bioinformatics, 24, 1865-1873)

Complex SHs, Y;,,.:

Complex coefficients:

Complex overlap:

Collect coefficients:

To give:

Expand as exponentials:

Hence:

Yim(0,0) = > UL Yi(0, ¢)
t
Anlm — Z anltUt(f?z,
t

S = Z D’l(%)s*(o’ BA’ ’YA)AZ]ST’{S_L",?’LP (R) D7(7l1)v(aB7 BB, 7B)Bnlv

kjsmnlv

kn

S = Z Dg)s*(()’5A7’YA)SJ('L??ZJ,)(R)D&)U(QB,5B,’YB)

jsmlv

valv,)v(aa Ba "Y) = Z I‘Z]ne_imae—itﬁe—iv'y
t

S = Z Fg?snsqm')(R)I‘Z;"’e—i(rﬂfl_57A+maB+tﬁB+v~yB)

js,lv
gsmlort

Translation Matrices From Fourier-Bessel Transform Theory

Using spherical Bessel transforms:

Rou(B) = \/g / " Ru(r)ju(Br)rdr; Ryu(r) = \/g / " Ru(B)ju(8r)B%s

it can be shown that

1+ 00
T (R = S Al /0 R (8) Bov (8)j(BR) 82d3

k=|1—1'|

where

A = (—1)S ok 4 1) [(20+ 1) 20 4+ 1)) z(l f k) (-)
‘ 000/ \mmm o0
e Can derive analytic formulae for both GTO and ETO radial functions

e Requires high precision math library (GMP)...

e Calculate once for R =1,2,3,...50A and store on disk (~ 200Mb)

Inside Hex — High Order FFTs and GPUs

e The SPF gives an analytic way to calculate TRANSLATIONAL + ROTATIONAL correlations:

In particular: Sip = Z A”mqﬂ’;ﬂ)(R)Atm —i(rBa—sya+map+tBp+vyp)

gsmlort

e This allows high order FFTs to be used — 1D, 3D, and 5D

e It also allows calculations to be easily ported to modern GPUs

e Up to 240 arithmetic “cores”
e Grid of threads SIMT model

e Correlation speed-up > 100x

e Overall speed-up = 45x
e GPU docking takes 15 seconds (475x faster than ZDOCK) — very important for large-scale!

D.W. Ritchie, D. Kozakov, S. Vajda (2008) Bioinformatics 24 1865-1873
D.W. Ritchie, et al. HealthGrid (2010), To Appear
D.W. Ritchie, V. Venkatraman (2010), In review

