
Using Graphics Processors
to Accelerate Protein Docking Calculations

Dave Ritchie
Orpailleur Team

INRIA Nancy – Grand Est

Protein-Protein Interactions – Why Are They Important ?

• Protein-protein interactions (PPIs) define the “machinery” of life

• Humans have about 30,000 proteins, each having about 5 PPIs

• Understanding PPIs could lead to immense scientific advances

• Controlling PPIs could have huge therapeutic benefits (new drug molecules)

What is Protein Docking ?

• Protein docking = predicting protein interactions at the molecular level

• If proteins are rigid => six-dimensional search space

• But proteins are flexible => multi-dimensional space!

• Modeling protein-protein interactions accurately is difficult!

Protein Docking Using Fast Fourier Transforms

• Conventional approaches digitise proteins into 3D Cartesian grids...

Surface: +1 Interior: −15 Interior: +1

y

β

β

γ

z

α
z

y

x

x

B

B

B

A

γA

R

• ...and use FFTs to calculated TRANSLATIONAL correlations:

C[∆x,∆y,∆z] =
∑

x,y,z A[x, y, z] × B[x + ∆x, y + ∆y, z + ∆z]

• BUT have to rotate one protein and REPEAT, which becomes EXPENSIVE!

• POLAR coordinates allow ROTATIONAL nature of the problem to be exploited

Some Theory – 2D Spherical Harmonic Surfaces

• Use spherical harmonics (SHs) as orthogonal shape “building blocks”

• Reals SHs ylm(θ, φ) , and coeffcients alm

• Encode distance from origin as SH series to order L:

• r(θ, φ) =
∑L

l=0

∑l
m=−l almylm(θ, φ)

• Calculate coefficients by numerical integration

• ROTATIONS: a′
lm =

∑l
m′=−l R

(l)
mm′(α, β, γ)alm′

• Good for shape-matching, not so good for docking...

Ritchie and Kemp (1999) J. Comp. Chem. 20 383–395

Docking Needs a 3D “Spherical Polar Fourier” Representation

• Need to introduce special orthonormal Laguerre-Gaussian radial functions, Rnl(r)

• Rnl(r) = N
(q)
nl e

−ρ/2ρl/2L
(l+1/2)
n−l−1 (ρ); ρ = r2/q, q = 20.

30

R15,0(r)

30

R20,0(r)

30

R25,0(r)

30

R30,0(r)

Molecular Surface

Solvent Accessible Surface Surface Skin

Protein Interior

Sampling
Spheres

Surface
Normals

• Surface Skin: σ(r) =

{

1; r ∈ surface skin

0; otherwise
Interior: τ (r) =

{

1; r ∈ protein atom

0; otherwise

• Parametrise as: σ(r) =
∑N

nlm aτ
nlmRnl(r)ylm(θ, φ), etc.

• TRANSLATIONS: aσ′′
nlm =

∑N
n′l′ T

(|m|)
nl,n′l′(R)aσ

n′l′m

SPF Protein Shape-Density Reconstruction

Interior density: τ (r) =
N
∑

n=1

n−1
∑

l=0

l
∑

m=−l

aσ
nlmRnl(r) ylm(θ, φ)

Image Order Coefficients

A Gaussians -

B N = 16 1,496

C N = 25 5,525

D N = 30 9,455

DW Ritchie (2003) Proteins Struct. Funct. Bionf. 52 98–106

Protein Docking Using SPF Density Functions

τ
σ(r)

(r)

Favourable:

∫

(σA(rA)τB(rB) + τA(rA)σB(rB))dV

Unfavourable:

∫

τA(rA)τB(rB)dV

Score: SAB =

∫

(σAτB + τAσB − QτAτB)dV Penalty Factor: Q = 11

Orthogonality: SAB =
∑

nlm

(

aσ
nlmbτnlm + aτ

nlm

(

bσnlm − Qbτnlm
))

Search: 6D space = 1 distance + 5 Euler rotations: (R, βA, γA, αB, βB, γB)

D.W. Ritchie and G.J.L. Kemp (2000) Proteins Struct. Funct. Bionf. 39 178–194

Nvidia Graphics Processors

• Modern GPUs have very high compute performance

• SIMT architecture = simultaneous instructions, multiple threads

• NVIDIA GPUs:

• Up to 4Gb memory

• Up to 240 arithmetic “cores”

• Up to Tera-flop performance

• Easy API with C++ syntax

• Grid of threads SIMT model

• BUT – for best results, need to understand the hardware...

The CUDA Device Architecture

• Typically 8–16 multi-processor blocks, each with 16 thread units

1 2 Thread Processors...

Shared Memory

15

0

0

Thread−Local Memory

Multiprocessor Block

7

(16Kb, fast)

Global Memory (256Mb − 4Gb, slow)

Host (PCIe)

• NB. only a very small amount of fast shared memory is available

• NB. global memory is ∼ 80x slower than shared memory

• Strategy: aim for “high arithmetic intensity” in shared memory

CUDA Programming Example - Matrix Multiplication

• Matrix multiplication C = A * B

• Each thread is responsible for calculating one element: C[i,k]

x

x=

=

i

k

i

kbx

by

i

k

ty
tx

C

C

A B

BA

• Conventional algorithm: rows and columns

• C[i,k] = A[i] * B[k]

• Thread-block algorithm working on tiles

• Threads co-operate by reading & sharing tiles of A & B

• Multi-processor launches multiple blocks to compute all of C

• Executing thread-blocks concurrently hides global memory latency

CUDA Programming Example – Matrix Multiplication Kernel
__global__ void matmul(int wA, int wB, float *A, float *B, float *C)

{

float Cik = 0.0; // thread-local result variable

int bx = blockIdx.x, tx = threadIdx.x; // thread subscripts

int by = blockIdx.y, ty = threadIdx.y; // ("this" thread is one of a 2-D grid)

__shared__ float a_sub[16][16], b_sub[16][16]; // declare shared memory

for (int j=0; j<wA; j+=16) { // thread-local loop over tiles of A and B

int ij = (16*by+ty)*wA + (j+tx); // thread-local array subscripts

int jk = (j+ty)*wB + (16*bx+tx);

a_sub[ty][tx] = A[ij]; // copy global data to shared memory ("I/O")

b_sub[ty][tx] = B[jk];

__syncthreads(); // wait until all memory I/O has finished

for (int jj=0; jj<16; jj++) {

Cik += a_sub[ty][jj] * b_sub[jj][tx]; // multiply row*column in current tiles

}

__syncthreads(); // synchronise threads before starting more I/O

}

C[(16*by+ty)*wB + (16*bx+tx)] = Cik; // copy local result -> global memory

}

GPU Implementation Part 1 – Rotate and Translate Protein A

1. On CPU, calculate multiple (βA, γA) rotations of protein A

2. On CPU, re-index translation matrices and rotated coefficients into regular sparse arrays

3. On GPU, translate multiple protein A coeffcients using tiled matrix multiplication

GPU Implementation Part 2 – Perform Multiple FFTs

• The overall aim is to calculate multiple 1D FFTs of the form:

C(αB) =
∑

m

e−imαB
∑

nl

Aσ
nlm(R, βA, γA) × Bτ

nlm(βB, γB)

4. On GPU, cross-multiply transformed A with rotated B coefficients (as above)

5. On GPU, perform batch of 1D FFTs using cuFFT and save best orientations

• 3D FFTs in (αB, βB, γB) can be calculated in a similar way...

Results – GPU v’s CPU Docking Performance

• Key Hex functions implemented using only 5 or 6 CUDA kernels

• 1D and 3D FFTs are calculated using Nvidia’s cuFFT library

• Here, GPU = Nvidia FX-5800, CPU = Intel i7-965

• Hex 1D correlations are up to 100x faster on FX-5800 than on iCore7

• Overall, including set-up, Hex 1D FFT is about 45x faster on FX-5800 than on iCore7

Results – Multiple GPUs and CPUs

• With Multi-threading, we can use as many GPUs and CPUs as are available

• For best performance: use 2 GPUs alone, or 6 CPUs plus 2 GPUs

• With 2 GPUs, docking takes only about 15 seconds – very important for large-scale!

“Hex” and “HexServer” – Publicly Available Docking Tools

Macindoe et al. (2010), Nucleic acids Research (featured article)

Conclusions and Future Prospects

• Protein-protein docking on a GPU now takes only a few seconds:

• This was implemented using only 5 or 6 GPU kernels

• But a lot of low-level CPU code had to be re-written

• High-throughput multi-shape comparison is now be feasible:

• Probing PPI networks...

• Assembling multi-component machines...

• Electron-microscopy density fitting...

• Full 3D small-molecule virtual screening...

• Protein shape matching and classification...

Acknowledgments

BBSRC 1996–2000
EPSRC 2000–2006

ANR 2009–2010

Software & Papers: http://hex.loria.fr/

HexServer: http://hexserver.loria.fr/

Extra Slides

Exploiting Prior Knowledge in SPF Docking

• Knowledge of even only one key residue can reduce search space enormously...

• This accelerates the calculation and helps to reduce false-positive predictions

5D FFT Correlations from Complex Overlap Expressions
(Ritchie, Kozakov, Vajda, (2008) Bioinformatics, 24, 1865–1873)

Complex SHs, Ylm: ylm(θ, φ) =
∑

t

U
(l)
mtYlt(θ, φ)

Complex coefficients: Anlm =
∑

t

anltU
(l)
tm

Complex overlap: S =
∑

kjsmnlv

D(j)∗
ms (0, βA, γA)A

∗
kjsT

(|m|)
kj,nl (R)D(l)

mv(αB, βB, γB)Bnlv

Collect coefficients: S
(|m|)
js,lv (R) =

∑

kn

A∗
kjsT

(|m|)
kj,nl (R)Bnlv, k > j;n > l

To give: S =
∑

jsmlv

D(j)∗
ms (0, βA, γA)S

(|m|)
js,lv (R)D(l)

mv(αB, βB, γB)

Expand as exponentials: D(l)
mv(α, β, γ) =

∑

t

Γtm
lv e−imαe−itβe−ivγ

Hence: S =
∑

jsmlvrt

Γrm
js S

(|m|)
js,lv (R)Γtm

lv e−i(rβA−sγA+mαB+tβB+vγB)

Translation Matrices From Fourier-Bessel Transform Theory

Using spherical Bessel transforms:

R̃nl(β) =

√

2

π

∫ ∞

0

Rnl(r)jl(βr)r
2dr; Rnl(r) =

√

2

π

∫ ∞

0

R̃nl(β)jl(βr)β
2dβ

it can be shown that

T
(|m|)
n′l′,nl(R) =

l+l′
∑

k=|l−l′|

A
(ll′|m|)
k

∫ ∞

0

R̃nl(β)R̃n′l′(β)jk(βR)β2dβ

where

A
(ll′|m|)
k = (−1)

k+l′−l
2

+m(2k + 1)
[

(2l + 1)(2l′ + 1)
]1/2

(

l l′ k

0 0 0

)(

l l′ k

m m 0

)

• Can derive analytic formulae for both GTO and ETO radial functions

• Requires high precision math library (GMP)...

• Calculate once for R = 1, 2, 3, ...50Å and store on disk (∼ 200Mb)

Inside Hex – High Order FFTs and GPUs

• The SPF gives an analytic way to calculate TRANSLATIONAL + ROTATIONAL correlations:

In particular: SAB =
∑

jsmlvrt

Λrm
js T

(|m|)
js,lv (R)Λtm

lv e−i(rβA−sγA+mαB+tβB+vγB)

• This allows high order FFTs to be used – 1D, 3D, and 5D

• It also allows calculations to be easily ported to modern GPUs

• Up to 240 arithmetic “cores”

• Grid of threads SIMT model

• Correlation speed-up ≥ 100x

• Overall speed-up = 45x

• GPU docking takes 15 seconds (475x faster than ZDOCK) – very important for large-scale!

D.W. Ritchie, D. Kozakov, S. Vajda (2008) Bioinformatics 24 1865–1873

D.W. Ritchie, et al. HealthGrid (2010), To Appear

D.W. Ritchie, V. Venkatraman (2010), In review

