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➢ Conclusion & Prospects
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➢ This work has 2 “points of reference”:
➢ QAML-Z: Quantum-Annealing based ML, PRA 102, 062405
➢ Search of stop: BDT based search, JHEP 09 (2018) 065

Motivation & Scope

➢ Improvement of classification versus classical MVA tools
➢ Quantum Annealing (QA)
➢ Tool: D-Wave: 2000Q annealer / Chimera graph

➢ Stage in HEP: Standard Model (SM) vs Beyond-SM
➢ Susymmetric top decaying in 4 bodies
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Stop & its 4-body decays:

& experimental
picture

Brief
phenomenological
motivation
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MSSM lagrangian with soft breaking terms :

Quark left- & -right superpartners (scalars) can strongly mix to form mass 
eigenstates :

“Up” squarks

A
T
 : Tri-linear (stop) mixing term

M
Q
 = SM quark mass

SM SUSY
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Mass difference of quark superpartners:
Proportional to M

Q
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t
 :

Strong mixing in the stops t
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 : Dynamic reason to be @ bottom of sParticles~
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Stop & Cold Dark Matter

Lightest Neutralino c0

1 
stable: Natural candidate for Cold Dark Matter

Observed W
CDM

h2 = 0.111±0.006 @ 95% CL (WMAP) well explained

IF dm = m(P) – m(c0

1
) small: Co-annihilations dominate

~
Dm = m(P) - m(c0

1
) ≤ 50 GeV/c2

...Soft decay products

~

~

➢ c0

1
 t

1
 → tg, tH0

i
, bH+

➢ t
1
 t(*)

1 
→ tt, gg, H0

i
H0

j
, H- H+, bb

_

~ ~

~ ~

~~ _

Boehm et al., PRD 62, 35012

Exciting for HEP in view of Cosmology Data:
Is stop/sbottom/stau degenerate with LSP ?
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t
1
 → b f f' c0

1 

~ ~

➢ p
T
(j1) > 110. 5, 3.5 < p

T
(e,m) < 30

➢ MET > 280   H
T
 > 200

Preselection:

Final state / Event signature:
1 lepton
At least 1 jet
Missing transverse energy

Main backgrounds:
ttbar W+jets

Signal:

s = [0.1,10] pb

s = 835 pb

s = 1395 pb
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Classification challenge: abundance & overlap
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Quantum Annealing:
Zooming & Augmenting
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Let x be the vector of input/discriminating variables
First build a set of weak classifiers c

i
(x), one for each variable

Classification: weak & strong classifiers

Then build a strong classifier with all weak classifiers c
i
(x)

w
i
 = {0,1}: problem to be solved by QA

y
t
: {-1,+1} event-by-event (t) label for {B,S}, provided by user

➢ Made by user
➢ c

i
(x): + / - for S / B

➢ n": combination of variable n & its 
70th & 30th percentiles

➢ n
+1

: 10th Signal percentile

➢ n
-1
:  90th Background percentile

➢ Reflective of S-B separation in x
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Classification: metric to minimize

Minimize an euclidean distance:
Quantified comparison between the labeling (y) & the classification (R

w
) of 

events (t)

Labeling, based on simulation:       Prediction, based on QA:

we know what is S & B       we classify S & B

Optimization is expressed in the optimal set of spins minimizing 
Energy of an Ising Hamiltonian:

Strong classifier:

c
i
(x): quasi-discrete: +-1/N

var
. s

i
: discrete → weak-classifiers turned on/off
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Classification: 1) Zooming

Effectively shifts & narrows the region of search in the space of spins.  
Updates vector m

i
 collected @ final iteration (T-1) to form the strong 

classifier:

→  Use of weak-classifiers c
i
 is   

     now continuous

➢ Zooming increases over-fitting. 2 step randomization procedure to 
regularize the iterative process:

➢ @ each iteration: if E
i
(t+1)>E

i
(t): spin flip s

i
 → -s

i
 with probability 

p
f
(t)={0.16,0.08,0.04,0.02,0.01,...,0.01}

➢ Subsequently, all qubits are uniformly randomly flipped: s
i
 → -s

i
 with probability 

q
f
(t)={0.08,0.04,0.02,0.01,0.005,...}<p

f
(t)
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Classification: 2) Augmentation

Weak-classifier more “informative” about discriminating distributions

Final Hamiltonian encoded on quantum annealer & optimized iteratively:

c
il
(x) = {-1,-1,...,+1,+1,+1,+1} / N

var
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Classification: annealing

H(t) = A(t) . S
i
 s

i
x ± B(t) . {S

ij
 J

ij
s

i
zs

j
z + S

i
 h

i
s

i
z ± 1}

           Driver Hamiltonian Problem Hamiltonian: Biases            
           Transverse field bought by the problem: h

i
, J

ij
: inputs

QA: spin s
i
 of H

Ising
 is interpreted as 

operator s
i
z on ith cubit in a system of 

N cubits

If at t=x lowest E isn’t reached:
→ increase ta ta= {1, 5, 20, 100, 2000} ms
→ pause annealing to allow the search by transverse field

0
t

1

A(t)=1
B(t)=0

A(t)=0
B(t)=1

. .

t=0 t=1

s=0

s=-1 s=+1

Tunneling in each state
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Implementation: H
Ising

 & ...hardware

Logical Hamiltonian:
H

Ising
 supposes that 1 spin can be connected to all spins: coupler J

ij

This isn’t (yet ?) feasible in HW

Embedding: Strongly couple a chain of qubits so that it represents one of 
the spins s

i
 in HW

→ HW H
Ising

 = Effective H with its limitations

Any limitation in embedding means a non-correspondance between 
{logical classification problem} and {its implementation in the HW}

Variable fixing: Option to reduce the size of the Ising model to be 
encoded on the annealer
Use the polynomial-time variable fixing scheme of the D-Wave API: 
classical procedure to fix the value of a portion of the input variables to 
values that have a high probability of being optimal
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2048 superconducting junction flux qubits arranged into a grid, with 5600 
couplers between the qubits

Implementation: DW chimera

N(J
ij
)=[N

v
.(N

v
-1)]/2 w N

v
=N

var
.(2A+1): can reach 8646 for A=5 and N

var
=12 

Chimera graph doesn't necessarily have enough links:
Proceed with [(1-Cutoff) . N

J
] links: reduce the size of model to be encoded
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Implementation: DW chimera

Final degree of freedom: the chain strength JF
If the strength of the couplers in the ferromagnetic chains making up the 
logical units is 1, then the maximum strength of any other coupler is 1/JF

There is a competition between {the chain needing to behave as a single 
large qubit} and {the problem Hamiltonian needing to drive the dynamics}:

→ If JF is very large, the chains will “freeze out” long before the logical 
problem, i.e., the chains will be far stronger than the problem early on, and 
the transverse field terms will be unable to induce the large multi-qubit 
flipping events necessary to explore the logical problem space

→ If JF is very weak, the chains will be broken (i.e., develop a kink or domain 
wall) by tension induced by the problem, or by thermal excitations, so the 
system will generally not find very good solutions

→ Measure of the qubit chains performed through a majority vote 
(across different samplings): possibly leading to the collection of 
non-optimal sets of solution spins, thus to a possible loss of 
discriminating information

Ideally: we want the chains & the logical problem to freeze at the same time
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Implementation: DW annealing specifics

➢ T(annealing) = 20 ms
➢ N(iterations) = 8

➢ {Ising model → annealer} encoding: reduce random errors on the 
h

i
 & J

ij
 by randomizing the encoding via sign flips, annealing over g 

gauges where g[8] ={50,10,10,...,10}
➢ For each gauge: sample annealing result 200 times & measure qubit chains 

with a majority vote
➢ Chain strength: ratio JF = Coupling within each chain / Largest 

coupling in Hamiltonian. JF[8]={3.0,1.0,0.5,0.2,0.1,0.1,...}

➢ Selection of excited states: 2 criteria ANDed:
➢ {E

ground
<0: E<(1−d)E

ground
} OR {E

ground
>0: E<(1+d)E

ground
}

➢ d[8]={0.08,0.04,0.02,0.01,...}
➢ maximum total number of excited states to be selected: n

e

➢ N
e
[8]={1,1,...,1}

➢ N(events) = 50k

Handles to reduce the size of the 
Ising model to be encoded on the 
annealer

➢ Cutoff C
➢ Fixing variables: On/Off
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Annealing: at work
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Experimental
considerations
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G. Cowan, "Two developments in tests for discovery: use of weighted Monte Carlo events and 
an improved measure", Progress on Statistical Issues in Searches, SLAC, June 4 - 6, 2012

➢ Lepton: p
T
, h, Q

➢ MET, M
T

➢ p
T
(j1), H

T
=S

i
 p

T
(j

i
), N(jet)

➢ b-quark: btag discriminant,  N(btag), p
T
(b), DR(l,b)

Approach: broad lines

1/ Use same input variables as in the BDT based search of stop:

to build weak-classifiers, fed to the QA

2/ Obtain strong classifier R through the QA machine of DW

3/ Assess the performance of each R through a Figure of Merit:
Cut-scan the strong classifier for S & B: maximize FOM

Compare the performance of R with the one of BDT for the benchmark 
signal point (m(t

1
),m(c0

1
))=(550,520): FOM(BDT) = 1.44
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Approach: broad lines & treatment of data

➢ All MC simulation
➢ Background processes: randomized & mixed according to their 

abundance s to represent SM
➢ Splits:

➢ Background samples split in 2:
➢ Big Test sample for assessing performance
➢ Within QA code: split in 2: Train & Test

➢ Signal:
➢ All (550,520) signal point: assessing performance (FOM)
➢ Within QA code: entire Dm=30, split in 2: Train & Test

Uncertainty due to fluctuations of QA , e.g. different embedding @ different 
times: We run the very same variables, with the exact same scheme 10 
times, observe the maximal FOMs, and take the standard deviation

All these versus: ➢ Different variables sets
➢ Augmentation (A,d)
➢ Cutoff & fixing variable heuristic 
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Different settings
&

Results
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Approach a

FOMmax ~ 0.48

Input to QA: all 12 input variables of the publication, not transformed in 
weak-classifiers
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Approach b

Input to QA: all 12 input variables 
of publication, transformed in 
weak classifiers

FOMmax ~ 0.73
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Until now: we introduced the input variables of the BDT, to the QA

But: MVA tools take into account correlations, while QA: not really

Idea: introduce 1-D variables, from the 12 original, which (already) contain 
correlative information as additional variables to the QA

Accounting for correlations

Operations guided by 
physics:

* Why a given set of 
variables & operations 
separate S from this  
and/or than B process: 
understood and checked 
in 2D distributions

* How much: guided my 
FOM maximisation
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Approach A

Input to QA: add N
V
 new variables 

made of physics-guided operations 
between pairs of the same variables: 
trying to capture differences of 
correlation between S & B. N

V
=5

FOMmax ~ 0.88
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Approach B

FOMmax ~ 0.91

Input to QA: add N
V
 new variables 

made of physics-guided operations 
between pairs of the same variables: 
trying to capture differences of 
correlation between S & B. N

V
=9
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Comparison with BDT

Question: Are our so far best approaches (A & B) totally comparable to BDT ?
1/ we include the same variables
2/ we include correlative information made of the same variables

BDT: before being trained, the discriminating variables fed are decorrelated
QA: we don’t decorrelate variables, whose “natural” basis might not be the 
optimal one for a linear classifier

So: we first pass our (different sets of) variables through Principal 
Component Analysis [i], then feed them to the QA
[i] “A Tutorial on Principle Component Analysis”, J. Shlens, arxiv:1404.1100v1
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Comparison with BDT

➢ a vs b: effect of the weak-classifier
➢ b vs B: effect of additional variables, even though A & B almost 

equivalent
➢ A vs PCA(A), B-PCA(B): effect of uncorrelating basis
➢ At PCA level: conceptually doing the same things than in BDT approach 

(JHEP 09 (2018) 065): the only difference: QA versus BDT
➢ PCA approaches: larger uncertainties. In PCA basis, the variables/c

i
's 

are more decorrelated. A weight variation (m
i
) for one variable is more 

independent from another. When a m
i
 fluctuates (e.g. b/c of the state of 

the machine), R is more sensitive to all variations of all m
i
, which are 

more independant, hence a larger variation of R itself
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Conclusions

➢ Systematic studies versus:
➢ Number of events = {100, 1k, 10k, 50k}
➢ Internal annealing parameters: Cutoff on coupling J

ij

➢ Augmentation parameters (d,A) versus N
var

➢ w & w/o weak-classifiers
➢ Sets of variables

➢ Best result achieved:
➢ Original 12 variables + (only) 5 “correlative” variables + PCA
➢ QA: 1.57 ± 0.24 / BDT: 1.44 ± 0.06

Our QA approach can do as good, if not better than classical 
MVA based approach

This is the first time that an annealing based quantum classification 
is at least as good as a classical one

➢ Publication: in proof reading. https://arxiv.org/abs/2106.00051

This is the second attempt of a binary classification
         based on quantum annealing

Based on a small & well motivated variables
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➢ Treatment of correlations:
➢ MVA tools (somehow differently) exploit differences of correlation: 

BDT: one can do PCA. NN: separates S & B via new basis of variables 
through different (layers of) nodes

➢ QA: Introduce to some extent correlation among the variables through 
the coupler J

ij
: HW chain corresponding to the coupler breakes → loss 

of coupling among variables
➢ Should improve with better device & embedding

➢ QA: Have to warm-up with operations among variables
➢ Embedding: {Logical problem}→{HW}: Should improve with device, 

new schemes ?
➢ Feezing time: What if the chains & logical problem don’t freeze out “at 

the same time”, i.e. reasonably close in time ? Can lead to pick-up sub-
optimal set of spins, thus strong classifier

➢ Broken chains: When happens: has to use majority vote across different 
draws → can “dilute” acquired discriminating information ?

➢ The larger number of available couplers in the machine will render 
each chain more stable, thus less prone to be broken

Discussion: Focus on QA specifics
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Outlook

➢ Following the same H
Ising

 based approach with Tensor-Network

➢ Classical but advanced tool
➢ Try on a more advanced quantum annealer: Pegasus graph of D-Wave

Test & benchmark the same classification problem:
Quantum versus Classical (latest/greatest)
Within Quantum Annealing: versus different graphs

Merci à
Artur 

Timothée
Timothée
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Backup
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SUperSYmmetry: Natural cure of Hierarchy problem
➢ Greatest discovery in HEP in last decades:

Higgs boson: m
H
 = 125 GeV/c2

➢ Consider Higgs mass correction from fermionic loop:

L
UV

: Energy-scale at which new physics alters the Standard-Model 

(momentum cut-off regulating the loop-integral)
If L

UV
 ~ M

P
    →    Dm2

H
 ~ O(1030) larger than m

H
 !!!

And all Standard-Model masses indirectly sensitive to L
UV

 !!!

Dm2
H
 quadratic divergence canceled :

Hierarchy problem naturally solved !
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t
1
 : Stop decays complementary in mass regions

~

t
1
 → t* c

1
0

b+W+c
1

0 < t
1
 < t+c

1
0

~ ~

~ ~ ~

t
1
 → t c

1
0

t+c
1

0 < t
1

~ ~

~ ~

t
1
 → b c

1
+

b+W+c
1
0 < t

1

W+c
1

0 < c+

1
< t

1
-b

~ ~

~ ~

~ ~ ~

c c0
1

b f f' c0
1

b W c0
1

~ ~ ~c+c
1

0 < t
1
 < b+W+c

1
0

b+f+f'+c
1

0 < t
1
 < b+W+c

1
0~ ~ ~

~ ~

~
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Weak classifier construction

n
cut

: S = 70% for n < n
cut

B < 70% for n < n
cut

: S on the left

        B on the right
➢ Center around n

cut
: n' = n – n

cut

➢ Invert b/c we want S to be on the 
right/positive side: n" = -n'

B > 70% for n < n
cut

:

S & B on the same side of n
cut

:

n
newcut

: S = 30% for n < n
newcut

          70% of S is above n
newcut

B > 30% for n < n
newcut

Most of B is below n
newcut

B/S on left/right: nothing 
to do:
n" = n – n

newcut

S(n") > B(n")

B < 30% for n < n
newcut

More than 70% of B 
above n

newcut
, in region 

where 70% of S is:
Variable not worth

What we want from a weak classifier for variable n:
Be +/- for Signal/Background dominated region of a variable n
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Annealing: the principle

H(t) = A(t) . S
i
 s

i

x ± B(t) . {S
ij
 J

ij
s

i

zs
j

z + S
i
 h

i
s

i

z ± 1}

           Driver Hamiltonian Problem Hamiltonian: Biases            
           Transverse field bought by the problem: h

i
, J

ij
: inputs

Adiabatic theorem: If Hamiltonian is interpolated from initial H(t=0) to 
final H(t=ta) slowly enough compared to minimum ground-to-first-excited 
state gap of H(t), the system will be in the ground state of H(t=ta) with 
high probability, provided it was initialized in the ground state of H(t=0). 
One can evolve from a simple, easy to initialize H at t=0 to a complicated 
H with an unknown ground state at t=ta, with ta: annealing time
Summary: If t decreases slowly enough: able to reach lowest E solution

A(t), B(t): annealing schedules. Monotonically: A(t): 1 → 0 / B(t): 0 → 1

➢ It can be simulated (SA)
➢ Specific to Quantum Annealing (QA): physically implemented by a circuit, 

with control lines in which e± are in quantum mode (superconducting 
metal). One can control the tunel barrier
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Implementation & Classification: sampling & result

Quantum annealers are (naturally ?) run in a batch mode in which one 
draws many samples from a single Hamiltonian
Repeated draws for QA are fast: DW averages ~5000 samples/s under 
optimal conditions

→ HW solution spins after multiple reads

→ Read-out to get spins a la 

→ Strong classifier

It’s the strong classifier that we use similarly to the output of NN or BDT...
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Classification: weak & strong classifiers

1/ To avoid mismodelling of input variables in regions with low statistics 
(tails): distribution of each variable is truncated

Remark: 
The strong classifier is, as defined and if not modified, only taking into 
account linear combinations of all variables via the weak classifiers:

So all the exploitation of differences of e.g. 2-by-2 correlation between S & 
B by MVA tools is a priori absent

2/ + - * / operations between input variables performed and fed as weak 
classifiers

→ Introduce 1- & 2-point correlations among variables
→ Help physicist to spot possibly meaningful - having physics     
    meaning - new variables., i.e. help discern new discriminating 
    variables so far missed by the physicist
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Approach a:
Even when input variables are in [-1,+1], it can have the bulk of 
distribution below or above 0, which is the criterion for being classified as 
S- or B-like. It's therefore possible that a majority of events are - or +, but 
at the same time for S and B -> less discrimination. i.e. less c_i's are 
relevant, particularly given the size dl of the scan.
dl isn't necessarily of the right size for one input variable, and thus doesn't 
scan it properly.

Approaches with weak-classifiers (>=b):
The distribution is centered around 70th percentile of S: we already know
that in + values of wc, are have 70% of S and <70% of B.
dl has the right size to scan a weak-classifier, because wc's are scaled as
function of initial distribution of input variables to reflect 30th, 70th
percentile -> We have more c_il's which have discriminating information
than only with input variables where a lot of c_i's give the same
information because most of the time being on the same side of the bulk
of the distribution.
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