Teaching cooking through chemistry

(and not the other way round)

Rodrigo Duarte-Casar

rduarte@utpl.edu.ec

School of Gastronomy - Department of Chemistry

Private Technical University of Loja - UTPL

A little context

Latecomers to gastronomy

- Early retirement
- Then studied cuisine
- ...then food science
- ...now applied chemistry
- We cook and we teach

From the kitchen to the lab

Six basic principles of food science, according to the Culinary Institute of America (CIA, 2011)

- 1. Caramelization
- 2. Maillard reactions
- 3. Gelatinization
- 4. Denaturation
- 5. Coagulation
- 6. Emulsification

Chef 2 Chef

The emphasis currently seems to be on teaching science through cooking

- MOOCs (edX, Coursera, etc.)
- Part II of HMG

Our goal is, paraphrasing K. López-Alt, to teach Better cooking through science, chef to chef

Current state - Ecuador

- 67% of Universities,
- 32% of Technical colleges,
- A few Schools,

...that teach gastronomy include food science in their curriculum.

Food chemistry, bromatology, art and science, food science and conservation, food physical chemistry are names for the subject.

ASOCIACIÓN DE CHEFS DEL ECUADOR

Teaching and blogging

- Food physical chemistry for culinary students - university
- Basic science training for culinary instructors professional association
- Sci-cook communication web chefs.ec etilmercurio.cl comer.me

Toda la Cocina es Molecular

POR ACE / EN 5 MAYO, 2021 / EN ARTÍCULO, MAGAZINE

La -quizá mal llamada- <u>cocina molecular</u> ya tuvo su momento de gloria, y dejó tras sus excesos una serie de técnicas muy interesantes y nuevos conocimientos. Sin embargo, quizá su mayor aporte fue el de acercar a los cocineros a las ciencias.

Hace más de treinta años comenzaba la gastronomía molecular, liderada por el físico Nicholas Kurti y el químico Hervé This. Ellos propusieron investigar los

Our students

- Highly motivated, mostly with little or no science background from high school
- Pandemic conditions:kitchen = lab (scale+thermometer)
- Varying socio economic scenarios

Motivating and approachable

Provide students and instructors with a toolkit

- Applies science
- Genuinely useful
- Simple equipment and ingredients
- Inexpensive
- Fun/magical

Seminars

Since 2016: Ecuador, Chile Universities, Technical colleges

- Scientific method
- Why preparations work
- Relevant examples
- Hands-on
 - For "salty cooks" tuiles, spherification, foams
 - For pastry cooks, soufflé

Class

For the 1st. semester class, introductory concepts on:

- Transformation
- 4 food molecules
 Water, Lipids, Carbohydrates, Proteins
- Perception
- Dispersions
 Emulsions, foams, gels
- Enzymes and fermentation
- Additives
- Food pairing

Examples: molecules

Water

- Finishing salt
- Coffee stirrers/fondant

• Lipids

- Fire oil
- Ganache

Carbohydrates

- Derivative sauces (roux + read Escoffier)
- Turkish delights

Proteins

- Ceviche
- Lemon foam

Examples: dispersions

Emulsions

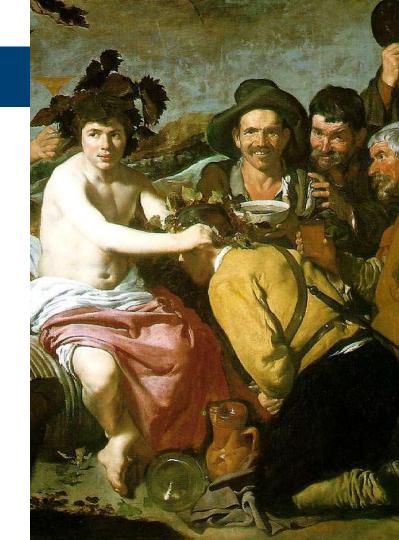
- Mayonnaise
- Geoffroys (milk, egg white, aquafaba)

Foams

- Swiss meringue
- Gels
 - Turkish delights
 - Gummies
- Combinations
 - Chantilly chocolate

Examples: others

- Perception
 - Basic sensory evaluation (chips)
- Enzymes
 - Milk gel (ginger juice)
 - Non-browning bananas
- Fermentation
 - Yogurt
 - Pickles
- Food pairing
 - Strawberry/cilantro
 - Cauliflower/cocoa



Appreciation

Likert scale 1=useless to 7=very useful

6.59±0.74 (n=41)

- Know the origins
- Improves technique
- Reduces stress
- Fosters creativity
- Anticipate results
- Problem solving
- Reinforces intuition

Next steps

- Re-visit science toward the end of the study program - requested
- Ecuadorian examples for all hands-on activity WIP
- Integrate sustainability requested

Next steps

- Water traditional ice-cream (helados de paila)
- Lipids mapahuira (black lard)
- Carbohydrate melcocha (sweets)
- Protein regional ceviche variations
- Emulsions Tamarillo-chile condiment (ají de tomate de árbol)
- Foams espumilla (guava-stabilized, hand beaten meringue)
- Gels/enzymes rennet custard
- Fermentation Chicha de jora (malted maize beer)
- Food pairing Traditional cuisine pairings

Conclusions

- Science-backed cooking is well received and garners interest
- Simple, approachable and inexpensive are vital
- Continuity is desirable

References

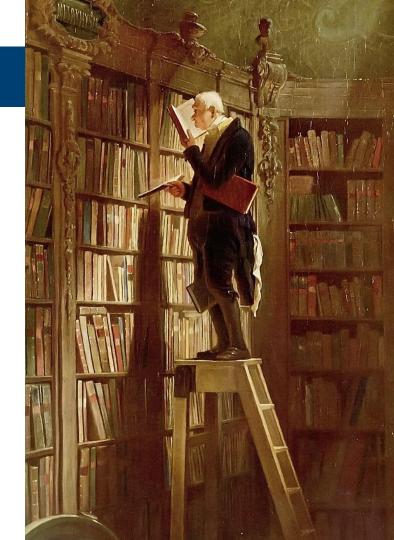
Culinary Institute of America (Ed.). (2011). *The professional chef (9th ed)*. John Wiley & Sons.

Lertsch, M. (2014). Texture: A Hydrocolloid Recipe Collection.

McGee, H. (2004). On food and cooking: The science and lore of the kitchen (Completely rev. and updated). Scribner.

Ministerio de Turismo del Ecuador (2012). *Ecuador culinario: Saberes y Sabores*. Al Digital

Mouritsen, O. G., & Styrbæk, K. (2017). *Mouthfeel: How texture makes taste* (M. Johansen, Trans.). Columbia University Press.


Myhrvold, N., Young, C., Bilet, M., & Smith, R. M. (2011). *Modernist cuisine: The art and science of cooking* (1st ed). Cooking Lab.

Spence, C. (2017) Gastrophysics: The New Science of Eating. Viking

This, H., & DeBevoise, M. (2012). *Molecular gastronomy: exploring the science of flavor*. Columbia University Press.

Vásquez-Moreno, R. (2015). *Ashanga cocina morlaca*. Universidad de Cuenca

Images: Francisco Caizapanta and public domain.

