

Edible oil foams stabilized by crystalline particles

Dr. Anne-Laure Fameau

Outline

1. Aqueous foams

2. Differences between aqueous & non-aqueous foams

3. Formulation rules for edible oil foams

4. Effect of co-crystallization on oil foam properties

Outline

1. Aqueous foams

2. Differences between aqueous & non-aqueous foams

3. Formulation rules for edible oil foams

4. Effect of co-crystallization on oil foam properties

Aqueous Foams for what?

What is an Aqueous Foam?

Mechanisms of foam destabilization

Drainage

Mechanisms of foam destabilization

Drainage

Coarsening

Mechanisms of foam destabilization

Drainage

Coarsening

Coalescence

Outline

1. Aqueous foams

2. Differences between aqueous & non-aqueous foams

3. Formulation rules for edible oil foams

4. Effect of co-crystallization on oil foam properties

What is a non-Aqueous Foam?

Aqueous Foams

Non-Aqueous Foams

What is a non-Aqueous Foam?

Aqueous Foams

Non-Aqueous Foams

Where can we find Non-Aqueous Foams?

Cosmetic industry

Petroleum industry

Food industry

Few data available on the formulation, production and characterization of Non-Aqueous Foams

Aqueous Foams

Non-Aqueous Foams

Maximum Liquid fraction < 1 %

Maximum Liquid fraction around < 10-20%

Large difference in the liquid fraction inside the foam

Aqueous Foams

Non-Aqueous Foams

Large difference in the surface tension of the solvents

Aqueous Foams

Non-Aqueous Foams

For oil systems, the low surface tension makes the adsorption of hydrocarbon-based surfactants energetically unfavourable.

Outline

1. Aqueous foams

2. Differences between aqueous & non-aqueous foams

3. Formulation rules for edible oil foams

4. Effect of co-crystallization on oil foam properties

Fluorocarbon-based surfactants

Low Foam Stability

B. Binks, et al., Coll Surf A, 2010.

Fluorocarbon-based surfactants

Low Foam Stability

B. Binks, et al., Coll Surf A, 2010.

<u>Partially Oleophobic Particles</u> (Surfaces coated with Fluoro groups)

Ultrastable Foam

R. Murakami, et al. Advanced Functional Materials, 2010.

Fluorocarbon-based surfactants

Low Foam Stability

<u>Partially Oleophobic Particles</u> (Surfaces coated with Fluoro groups)

Ultrastable Foam

R. Murakami, et al. Advanced Functional Materials, 2010.

B. Binks, et al., Coll Surf A, 2010.

<u>Crystalline particles of fatty components (Mono-, Di-, Triglycerides, fatty acids, fatty alcohol & sucrose esters)</u>

Ultrastable & based on Food grade components

L. K. Shrestha, et al., Langmuir, 2006.

A-L. Fameau et al., Langmuir, 2015.

Y. Lui, et al., JCIS, 2021.

M. Callau et al., Food Chemistry, 2020.

A-L. Fameau, Book chapter. Handbook of Molecular Gastronomy, 2021

Fluorocarbon-based surfactants

Low Foam Stability

<u>Partially Oleophobic Particles</u> (Surfaces coated with Fluoro groups)

Ultrastable Foam

R. Murakami, et al. Advanced Functional Materials, 2010.

B. Binks, et al., Coll Surf A, 2010.

<u>Crystalline particles of fatty components (Mono-, Di-, Triglycerides, fatty acids, fatty alcohol & sucrose esters)</u>

Ultrastable & based on Food grade components

L. K. Shrestha, et al., Langmuir, 2006.

A-L. Fameau et al., Langmuir, 2015.

Y. Lui, et al., JCIS, 2021.

M. Callau et al., Food Chemistry, 2020.

A-L. Fameau, Book chapter. Handbook of Molecular Gastronomy, 2021

<u>Vegetable oils</u>

Fatty components

- Mono-, Di-, Triglycerides
- Fatty acids
- Fatty alcohol
- Sucrose esters

<u>Vegetable oils</u>

Fatty components

- Mono-, Di-, Triglycerides
- Fatty acids
- Fatty alcohol
- Sucrose esters

Fatty component soluble at high temperatures

Vegetable oils

Fatty components

- Mono-, Di-, Triglycerides
- Fatty acids
- Fatty alcohol
- Sucrose esters

Fatty component soluble at high temperatures

Crystalline particles

Oleogel formation due to the formation of crystalline particles

To produce crystalline particles: determination of the solubility limit for each fatty component in a given oil.

How to produce Oil foam?

How to produce Oil foam?

How to produce Oil foam?

Two ways to produce oil foams by whipping: (1) by cooling during the oleogel formation or (2) directly from the oleogel

How to stabilize Oil foam?

How to stabilize Oil foam?

Key parameter for crystals to adsorb at the air-oil surface is to exhibit a suitable contact angle < 90°.

How to stabilize Oil foam?

Size & shape of crystalline particles depend on: cooling rate, shearing rate & nature of fatty component.

stearic acid

12-hydroxystearic acid

Size & shape of crystalline particles depend on: cooling rate, shearing rate & nature of fatty component.

Size & shape of crystalline particles depend on: cooling rate, shearing rate & nature of fatty component.

Fatty alcohol & Fatty acid (stearic acid/stearyl alcohol)

Effect of the particles size?

Fatty alcohol & Fatty acid (stearic acid/stearyl alcohol)

Effect of the particles size?

Fatty alcohol & Fatty acid (stearic acid/stearyl alcohol)

Effect of the particles size?

Fatty alcohol & Fatty acid (stearic acid/stearyl alcohol)

Size, important parameter: small crystals higher overrun & foam stability

Formulation rules

Key parameters for crystalline particles depend on: cooling rate, shearing rate & nature of fatty component.

Outline

1. Aqueous foams

2. Differences between aqueous & non-aqueous foams

3. Formulation rules for edible oil foams

4. Effect of co-crystallization on oil foam properties

Callau et al. JCIS, 2020 Callau et al. Food Chemistry, 2020

R= 10:0

Fatty Alcohol

R = 0:10

R= 10:0

Fatty Alcohol

x20

Fatty Alcohol

Platelet-shape for all R, but the size of crystals varies with R: two R with very small crystals

Mixed crystals for R = 8:2, R = 7:3 with the smallest crystals

Callau et al. JCIS, 2020 52

R= 10:0

Fatty Alcohol

Fatty Alcohol

100 μm

R = 2:8

R = 0:10

Fatty Acid

x20

<u>100 μm</u>

Fatty Acid

55

Fatty Acid

High Overrun and small bubbles for mixed crystals (R=8:2 & R=7:3)

High hardness of foams for mixed crystals

(R=8:2 & R=7:3)

Co-crystallization of fatty acids/fatty alcohols improves foam properties by the presence of small mixed crystals in high quantity

Conclusion

Size of the crystalline particles:

Co-crystallization: increase the quantity & decrease crystals size

Acknowledgments

Orlin Velev (NCSU, USA)
Stephanie Lam (NCSU, USA)

NC STATE UNIVERSITY

Audrey Arnould (INRAE, France) Cédric Gaillard (INRAE, France)

Arnaud Saint-Jalmes (IPR, France)

Marion Callau (L'Oréal, R&I)

